NJD1718, NJVNJD1718

Power Transistors

PNP Silicon DPAK For Surface Mount Applications

Designed for high-gain audio amplifier and power switching applications.

Features

- Low Collector-Emitter Saturation Voltage
- High Switching Speed
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	$V_{C B}$	-50	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-50	Vdc
Emitter-Base Voltage	V_{EB}	-5	Vdc
Collector Current - Continuous	I_{C}	-2	Adc
Collector Current - Peak	I_{CM}	-3	Adc
Base Current	I_{B}	-0.4	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 15 \\ & 0.1 \end{aligned}$	$\underset{W}{\mathrm{~W} /{ }^{\circ} \mathrm{C}}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 1.68 \\ & 0.011 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD - Human Body Model	HBM	3B	V
ESD - Machine Model	MM	C	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. These ratings are applicable when surface mounted on the minimum pad sizes recommended.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance			${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case	R $_{\text {өJC }}$	10	
Junction-to-Ambient (Note 2)	R $_{\text {ӨJA }}$	89.3	

2. These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
SILICON
POWER TRANSISTORS
2 AMPERES
50 VOLTS
15 WATTS
BASE
EMITTER
CASE 369C
STYLE 1

MARKING DIAGRAM

A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping †
NJD1718T4G	DPAK (Pb-Free)	$2500 /$ Tape \& Reel
NJVNJD1718T4G	DPAK (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (Note 3) $\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{BV}_{\mathrm{CEO}}$	-50		-
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=-50\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$		Vdc	
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=-5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\mathrm{EBO}}$	-		-100
nAdc				

ON CHARACTERISTICS

DC Current Gain (Note 3) $\left(\mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}\right)$ ($\mathrm{I}_{\mathrm{C}}=-1.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2 \mathrm{Vdc}$)	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 70 \\ & 40 \end{aligned}$		240 -	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage (Note 3) } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.05 \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-0.2	-0.5	Vdc
Base-Emitter Saturation Voltage (Note 3) $\left(\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.05 \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-	-1.2	Vdc
Base-Emitter On Voltage (Note 3) ($\mathrm{I}_{\mathrm{C}}=-1 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=-2 \mathrm{Vdc}$)	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	-	-1.2	Vdc

DYNAMIC CHARACTERISTICS

$\begin{aligned} & \text { Current-Gain - Bandwidth Product (Note 4) } \\ & \left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{Vdc}, \mathrm{f}_{\text {test }}=10 \mathrm{MHz}\right) \end{aligned}$	f_{\top}	-	80	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	33	-	pF
Switching Timers$V_{C C}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}$	ton	-	55	-	ns
	${ }_{\text {t }}^{\text {STG }}$	-	320	-	
	t_{f}	-	40	-	

3. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\approx 2 \%$.
4. $\mathrm{f}_{\mathrm{T}}=\left|\mathrm{h}_{\mathrm{fe}}\right| \bullet \mathrm{f}_{\mathrm{test}}$.

NJD1718, NJVNJD1718

TYPICAL CHARACTERISTICS

Figure 1. DC Current Gain

Figure 3. Base-Emitter Saturation Voltage

Figure 4. Base-Emitter Voltage

Figure 5. Capacitance

NJD1718, NJVNJD1718

TYPICAL CHARACTERISTICS

Figure 9. Thermal Response

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

SCALE 1:1

SOLDERING FOOTPRINT*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

