ON Semiconductor ## Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, ## **Silicon Power Transistors** The NJW21193G and NJW21194G utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications. #### **Features** - Total Harmonic Distortion Characterized - High DC Current Gain - Excellent Gain Linearity - High SOA - These Devices are Pb-Free and are RoHS Compliant #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-----------------|-----------| | Collector-Emitter Voltage | V _{CEO} | 250 | Vdc | | Collector-Base Voltage | V _{CBO} | 400 | Vdc | | Emitter-Base Voltage | V _{EBO} | 5.0 | Vdc | | Collector-Emitter Voltage - 1.5 V | V _{CEX} | 400 | Vdc | | Collector Current - Continuous | I _C | 16 | Adc | | Collector Current - Peak (Note 1) | I _{CM} | 30 | Adc | | Base Current - Continuous | I _B | 5.0 | Adc | | Total Power Dissipation @ T _C = 25°C
Derate Above 25°C | P _D | 200
1.6 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | – 65 to
+150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 μs, Duty Cycle ≤ 10%. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|----------------|-------|------| | Thermal Resistance,
Junction-to-Case | $R_{ heta JC}$ | 0.625 | °C/W | | Thermal Resistance,
Junction-to-Ambient | $R_{ heta JA}$ | 40 | °C/W | ### ON Semiconductor® http://onsemi.com ## 16 AMPERES COMPLEMENTARY SILICON **POWER TRANSISTORS 250 VOLTS, 200 WATTS** = 3 or 4 G = Pb-Free Package = Assembly Location = Year WW = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------|--------------------|---------------| | NJW21193G | TO-3P
(Pb-Free) | 30 Units/Rail | | NJW21194G | TO-3P
(Pb-Free) | 30 Units/Rail | ### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------------|-------------|--------|----------|------| | OFF CHARACTERISTICS | • | | • | | | | Collector–Emitter Sustaining Voltage ($I_C = 100 \text{ mAdc}, I_B = 0$) | V _{CEO(sus)} | 250 | _ | - | Vdc | | Collector Cutoff Current (V _{CE} = 200 Vdc, I _B = 0) | ICEO | - | - | 100 | μAdc | | Emitter Cutoff Current (V _{CE} = 5 Vdc, I _C = 0) | I _{EBO} | - | - | 100 | μAdc | | Collector Cutoff Current
(V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc) | I _{CEX} | - | - | 100 | μAdc | | SECOND BREAKDOWN | | | | | | | Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 50 Vdc, t = 1 s (non-repetitive) (V _{CE} = 80 Vdc, t = 1 s (non-repetitive) | I _{S/b} | 4.0
2.25 | -
- | -
- | Adc | | ON CHARACTERISTICS | <u>'</u> | | • | • | • | | DC Current Gain $ (I_C = 8 \text{ Adc, } V_{CE} = 5 \text{ Vdc}) $ $ (I_C = 16 \text{ Adc, } I_B = 5 \text{ Adc}) $ | h _{FE} | 20
8 | _
_ | 80
- | | | Base-Emitter On Voltage
(I _C = 8 Adc, V _{CE} = 5 Vdc) | V _{BE(on)} | - | - | 2.2 | Vdc | | Collector–Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.8 Adc) (I _C = 16 Adc, I _B = 3.2 Adc) | V _{CE(sat)} | -
- | -
- | 1.4
4 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | Total Harmonic Distortion at the Output V _{RMS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS} h _{FE} unmatched | T _{HD} | | 0.8 | | % | | (Matched pair h _{FE} = 50 @ 5 A/5 V) h _{FE} matched | | - | 0.08 | _ | | | Current Gain Bandwidth Product
(I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz) | f _T | 4 | - | - | MHz | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz) | C _{ob} | - | - | 500 | pF | ## PNP NJW21193G 6.5 V_{CE} = 10 V 6.0 V_{CE} = 10 V 5.5 5.0 4.5 4.0 3.5 T_J = 25°C f_{test} = 1 MHz 3.0 0.1 1.0 10 I_C COLLECTOR CURRENT (AMPS) Figure 1. Typical Current Gain Bandwidth Product ### **NPN NJW21194G** $f_{\rm T}$, CURRENT GAIN BANDWIDTH PRODUCT (MHz) 8.0 7.0 6.0 5.0 $V_{CE} = 5$ 4.0 3.0 2.0 $T_J = 25^{\circ}C$ 1.0 f_{test} = 1 MHz 1.0 10 I_C COLLECTOR CURRENT (AMPS) Figure 2. Typical Current Gain Bandwidth Product #### **TYPICAL CHARACTERISTICS** Figure 3. DC Current Gain, V_{CE} = 20 V Figure 4. DC Current Gain, V_{CE} = 20 V Figure 5. DC Current Gain, V_{CE} = 5 V Figure 7. Typical Output Characteristics Figure 8. Typical Output Characteristics Figure 6. DC Current Gain, V_{CE} = 5 V #### **TYPICAL CHARACTERISTICS** Figure 9. Typical Saturation Voltages Figure 10. Typical Saturation Voltages 100 Figure 11. Typical Base-Emitter Voltage Figure 12. Typical Base-Emitter Voltage Figure 13. Active Region Safe Operating Area Figure 14. Active Region Safe Operating Area There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown. 10000 T_C = 25°C T_C = 25°C C_{ib} 1000 T_(test) = 1 MHz) 100 V_B, REVERSE VOLTAGE (VOLTS) Figure 15. NJW21193G Typical Capacitance Figure 16. NJW21194G Typical Capacitance Figure 17. Typical Total Harmonic Distortion Figure 18. Total Harmonic Distortion Test Circuit **DATE 30 OCT 2007** - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2 CONTROLLING DIMENSION: MILLIMETERS 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP. - DIMENSION A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | |-----|-------------|-------|-------| | DIM | MIN | NOM | MAX | | Α | 19.70 | 19.90 | 20.10 | | В | 15.40 | 15.60 | 15.80 | | С | 4.60 | 4.80 | 5.00 | | D | 0.80 | 1.00 | 1.20 | | Е | 1.45 | 1.50 | 1.65 | | F | 1.80 | 2.00 | 2.20 | | G | 5.45 BSC | | | | Н | 1.20 | 1.40 | 1.60 | | J | 0.55 | 0.60 | 0.75 | | K | 19.80 | 20.00 | 20.20 | | L | 18.50 | 18.70 | 18.90 | | P | 3.30 | 3.50 | 3.70 | | Q | 3.10 | 3.20 | 3.50 | | U | 5.00 REF | | | | W | 2.80 | 3.00 | 3.20 | ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Pb-Free Package G = Assembly Location Α Υ = Year WW = Work Week *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. ### PIN 1. BASE 2. COLLECTOR STYLE 1: EMITTER COLLECTOR ANODE CATHODE 2. ANODE CATHODE TO-3P-3LD STYLE 2: STYLE 3: PIN 1. GATE 2. DRAIN SOURCE DRAIN | DOCUMENT NUMBER: | 98AON25095D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | |------------------|-------------|---| | | | | ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **DESCRIPTION:** PAGE 1 OF 1 ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Bipolar Transistors - BJT category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: 619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15