Dual 2-Input NOR Gate

NL27WZ02

The NL27WZ02 is a high performance dual 2-input NOR Gate operating from a 1.65 V to 5.5 V supply.

Features

- Designed for 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- $2.5 \mathrm{~ns} \mathrm{t}_{\mathrm{PD}}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (typ)
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I IFFF Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in US8, UDFN8 and UQFN8 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

NL27WZ02

Figure 2. Pinout

PIN ASSIGNMENT (US8 / UDFN8)		PIN ASSIGNMENT (UQFN8)	
Pin	Function	Pin	Function
1	A1	1	Y1
2	B1	2	B2
3	Y2	3	A2
4	GND	4	GND
5	A2	5	Y2
6	B2	6	B1
7	Y1	7	A1
8	V_{CC}	8	V_{CC}

NL27WZ02

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +6.5	V
	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \\ -0.5 \text { to }+6.5 \\ -0.5 \text { to }+6.5 \end{gathered}$	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<\mathrm{GND}$	-50	mA
IOK	DC Output Diode Current \quad VOUT < GND	-50	mA
Iout	DC Output Source/Sink Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC Supply Current per Supply Pin or Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 secs	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	$\begin{array}{lr}\text { Thermal Resistance (Note 2) } & \text { US8 } \\ \text { UQFN8 } \\ \text { UDFN8 }\end{array}$	$\begin{aligned} & 250 \\ & 210 \\ & 231 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{\text {D }}$	$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { US8 } \\ & \text { UQFN8 } \\ \text { UDFN8 }\end{array}$	$\begin{aligned} & 500 \\ & 595 \\ & 541 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	-
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 3) $\begin{array}{r}\text { Human Body Model } \\ \text { Charged Device Model }\end{array}$	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	V
ILatchup	Latchup Performance (Note 4)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to

EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 5.5 \\ & 5.5 \end{aligned}$	
T_{A}	Operating Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 20 \\ 20 \\ 10 \\ 5 \end{gathered}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Units
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		1.65 to 1.95	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	V
			2.3 to 5.5	$0.70 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.70 \mathrm{~V}_{\mathrm{CC}}$	-	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		1.65 to 1.95	-	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
			2.3 to 5.5	-	-	$0.30 \mathrm{~V}_{\mathrm{CC}}$	-	$0.30 \mathrm{~V}_{\mathrm{CC}}$	
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}_{\mathrm{OH}}=-100 \mu \mathrm{AA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}^{2} \mathrm{~mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	$\mathrm{V}_{\mathrm{CC}}-0.1$ 1.29 1.9 2.2 2.4 2.3 3.8	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & 1.4 \\ & 2.1 \\ & 2.4 \\ & 2.7 \\ & 2.5 \\ & 4.0 \end{aligned}$		$\mathrm{V}_{\mathrm{CC}}-0.1$ 1.29 1.9 2.2 2.4 2.3 3.8		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{or} \mathrm{~V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{uA} \\ \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ \hline \end{array}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ 0.08 \\ 0.2 \\ 0.22 \\ 0.28 \\ 0.38 \\ 0.42 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$	V
1 N	Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	1.65 to 5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$	0	-	-	1.0	-	10	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5	-	-	1.0	-	10	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$		Units
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, (A or B) to Y	1.65 to 1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{MQ} \\ & \mathrm{R}_{1}=\text { Open } \end{aligned}$	-	7.4	9.5	-	9.7	ns
		2.3 to 2.7		-	3.3	5.4	-	5.8	
		3.0 to 3.6		-	2.6	3.9	-	4.3	
		4.5 to 5.5		-	1.9	3.1	-	3.3	
		3.0 to 3.6	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{R}_{1}=\text { Open } \end{aligned}$	-	3.2	4.8	-	5.2	
		4.5 to 5.5		-	2.5	3.7	-	4.0	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
C_{PD}	Power Dissipation Capacitance (Note 5)	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC} $10 \mathrm{MHz}, \mathrm{V} \mathrm{CC}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	9	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

C_{L} includes probe and jig capacitance
R_{T} is $\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
$\mathrm{f}=1 \mathrm{MHz}$
Figure 3. Test Circuit

Figure 4. Switching Waveforms

$\mathbf{V}_{\mathbf{C C}}, \mathbf{v}$	$\mathbf{V}_{\mathbf{m o}}, \mathbf{V}$			
			$\mathbf{t}_{\mathbf{P Z L}}, \mathbf{t}_{\mathbf{P L Z}}, \mathbf{t}_{\mathbf{P Z H}}, \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{v}_{\mathbf{Y},} \mathbf{v}$
	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
2.3 to 2.7	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
3.0 to 3.6	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3
4.5 to 5.5	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3

DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping †
NL27WZ02USG	US8	L3	Q4	$3000 /$ Tape \& Reel
NL27WZ02MQ1TCG (In Development)	UQFN8, $1.6 \times 1.6,0.5 \mathrm{P}$	TBD	TBD	$3000 /$ Tape \& Reel
NL27WZ02MU1TCG	UDFN8, $1.95 \times 1.0,0.5 \mathrm{P}$	AL	Q4	$3000 /$ Tape \& Reel
NL27WZ02MU1TWG	UDFN8, $1.95 \times 1.0,0.5 \mathrm{P}$	AM	Q 1	$3000 /$ Tape \& Reel
NL27WZ02MU3TCG	UDFN8, $1.45 \times 1.0,0.35 \mathrm{P}$	J	$\mathrm{Q4}$	$3000 /$ Tape \& Reel
NL27WZ02MU2TCG	UDFN8, $1.6 \times 1.0,0.4 \mathrm{P}$	AH	$\mathrm{Q4}$	$3000 /$ Tape \& Reel
NL27WZ02MQ2TCG (In Development)	UQFN8, $1.4 \times 1.2,0.4 \mathrm{P}$	TBD	TBD	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Pin 1 Orientation in Tape and Reel
Direction of Feed

SCALE $4: 1$

strategy and soldertio detalls, pleaze
dominoad the ON Senconductor soldering and
Mounting Techniques Reference Manual,
Moonnoad the ON Senticoncuctor Soldering an
MOUNERRNHD.
NDTES:

1. DIMENSIONING AND TQLERANCING PER ANSI Y14.5M, 1982.
2. CINTRILLING DIMENSİN: MILLIMETERS
3. Dimensian a daes nat include mald flash, pratrusidn, ar Gate burr. mald flash, pratrusion, ar gate burr SHALL NOT EXCEED 0.14 (0.0055°) PER SIDE.
4. Dimensian b daes nat include interlead flash ar pratrusicn. interlead flash and pratrusinn shall nat EXCEED 0.14 (0.0055°) PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH THICKNESS DF $0.0076-0.0203$ MM ($0.003-0.008^{\circ}$).
6. ALL TOLERANCE UNLESS \quad aTHERWISE SPECIFIED ± 0.0508 MM (0.000°).

DIM	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN	MAX.
A	1.90	2.10	0.075	0.083
B	2.20	2.40	0.087	0.094
C	0.60	0.90	0.024	0.035
D	0.17	0.25	0.007	0.010
F	0.20	0.35	0.008	0.014
G	0.50 BSC		0.020 BSC	
H	0.40 REF		0.016 REF	
J	0.10	0.18	0.004	0.007
K	0.00	0.10	0.000	0.004
L	3.00	3.25	0.118	0.128
M	$0{ }^{\circ}$	6°	0°	6°
N	$0 \times$	10°	0°	10°
P	0.23	0.34	0.010	0.013
R	0.23	0.33	0.009	0.013
S	0.37	0.47	0.015	0.019
U	0.60	0.80	0.024	0.031
V	0.12 BSC		0.005 BSC	

GENERIC MARKING DIAGRAM*

XX	$=$ Specific Device Code
M	$=$ Date Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AONO4475D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | US8 | PAGE 1 OF 1 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

\[

\]

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH

BURRS AND MOLD FLA

	MILLIMETERS	
DIM	IIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.15	0.25
D	1.60	BSC
E	1.00	
BSC		
e	0.40	
L	0.25	0.35
L1	0.30	0.40

GENERIC
MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

RECOMMENDED

 SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON56788E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN8, 1.6X1, 0.4P		PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP
4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.15	
D	0.25	
E	1.45 BSC	
e	0.35	
BSC		
L	0.25	0.35
L1	0.30	0.40

GENERIC
MARKING DIAGRAM*

$X=$ Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking.
$\mathrm{Pb}-$ Free indicator, "G" or microdot " \cdot ", may or may not be present.

RECOMMENDED
SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON56796E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8, 1.45X1, 0.35P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 22 SEP 2020
NDTES:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 2009.
2. CONTRDLLING DIMENSICN: MILLIMETERS
3. DIMENSIDN b APPLIES TD PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FRDM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TO TD ALL THE TERMINALS.
5. PACKAGE DIMENSIGNS EXCLUSIVE DF BURRS AND MILD FLASH.

PIN 1 REFERENCE TDP VIEW

DETAIL
B

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	0.45	0.50	0.55
A1	0.00	---	0.05
A3	0.13 REF		
b	0.15	0.20	0.25
D	1.85	1.95	2.05
E	0.90	1.00	1.10
e	0.50 BSC		
L	0.25	0.30	0.35
L1	0.30	0.35	0.40

BZTTGM VIEW NDTE 3

GENERIC
 MARKING DIAGRAM*

$$
\begin{aligned}
& X=\text { Specific Device Code } \\
& M=\text { Date Code }
\end{aligned}
$$

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56797E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	UDFN8, 1.95X1.0, 0.5P	PAGE 1 OF 1

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
74HC85N NLU1G32AMUTCG CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG
NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G
74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G
NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG
74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NL17SG08DFT2G
NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG
NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

