Schmitt Trigger Buffer, Dual, Non-Inverting

NL27WZ17

The NL27WZ17 is a high performance dual buffer with Schmitt-Trigger inputs operating from a 1.65 to 5.5 V supply.

Features

- Designed for 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- $3.7 \mathrm{~ns}_{\mathrm{tPD}}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (Typ)
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Sink 32 mA at 4.5 V
- Available in SC-88, SC-74, and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 2. Pinout (Top View)

PIN ASSIGNMENT

Pin	Function
1	A 1
2	GND
3	A 2
4	Y 2
5	$\mathrm{~V}_{\mathrm{CC}}$
6	Y 1

FUNCTION TABLE

A Input	Y Output
L	L
H	H

MAXIMUM RATINGS

Symbol	Characteristics		Value	Units
V_{CC}	DC Supply Voltage	$\begin{array}{r} \text { SC-88 (NLV) } \\ \text { SC-88, SC-74, UDFN6 } \end{array}$	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+6.5 \end{aligned}$	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	$\begin{array}{r} \text { SC-88 (NLV) } \\ \text { SC-88, SC-74, UDFN6 } \end{array}$	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+6.5 \end{aligned}$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage SC-88 (NLV)	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} \hline-0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \\ -0.5 \text { to }+7.0 \\ -0.5 \text { to }+7.0 \end{gathered}$	V
	DC Output Voltage SC-88, SC-74, UDFN6	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \\ -0.5 \text { to }+6.5 \\ -0.5 \text { to }+6.5 \end{gathered}$	V
IIK	DC Input Diode Current, $\mathrm{V}_{\text {IN }}<$ GND		-50	mA
lok	DC Output Diode Current, Vout < GND		-50	mA
IOUT	DC Output Source/Sink Current		± 50	mA
I_{Cc} or $\mathrm{I}_{\text {GND }}$	DC Supply Current per Supply Pin or Ground Pin		± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 secs		260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias		+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 2)	$\begin{aligned} & \hline \text { SC-88 } \\ & \text { SC-74 } \\ & \text { UDFN6 } \end{aligned}$	$\begin{aligned} & 377 \\ & 320 \\ & 154 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air	$\begin{aligned} & \hline \text { SC-88 } \\ & \text { SC-74 } \\ & \text { UDFN6 } \end{aligned}$	$\begin{aligned} & 332 \\ & 390 \\ & 812 \end{aligned}$	mW
MSL	Moisture Sensitivity		Level 1	-
F_{R}	Flamebility Rating	Oxygen Index: 28 to 34	UL 94-V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model (NLV) Charged Device Model	$\begin{aligned} & 2000 \\ & 1000 \\ & \text { N/A } \end{aligned}$	V
lıATCHup	Latchup Performance (Note 4)	(NLV)	$\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by- $1 \mathrm{inch}, 2$ ounce copper trace no air flow per JESD51-7.
3. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 5.5 \\ & 5.5 \end{aligned}$	V
T_{A}	Operating Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Transition Rise or Fall Rate	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	No Limit No Limit No Limit No Limit	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{V}_{\mathrm{T}}+$	Positive Input Threshold Voltage		1.65	-	1.0	1.4	-	1.4	-	1.4	V
			2.3	-	1.5	1.8	-	1.8	-	1.8	
			2.7	-	1.7	2	-	2	-	2	
			3	-	1.9	2.2	-	2.2	-	2.2	
			4.5	-	2.7	3.1	-	3.1	-	3.1	
			5.5	-	3.3	3.6	-	3.6	-	3.6	
$\mathrm{V}^{\text {- }}$	Negative Input Threshold Voltage		1.65	0.2	0.5	-	0.2	-	0.2	-	V
			2.3	0.4	0.75	-	0.4	-	0.4	-	
			2.7	0.5	0.87	-	0.5	-	0.5	-	
			3	0.6	1.0	-	0.6	-	0.6	-	
			4.5	1.0	1.5	-	1.0	-	1.0	-	
			5.5	1.2	1.9	-	1.2	-	1.2	-	
V_{H}	Input Hysteresis Voltage		1.65	0.1	0.48	0.9	0.1	0.9	0.1	0.9	V
			2.3	0.25	0.75	1.1	0.25	1.1	0.25	1.1	
			2.7	0.3	0.83	1.15	0.3	1.15	0.3	1.15	
			3	0.4	0.93	1.2	0.4	1.2	0.4	1.2	
			4.5	0.6	1.2	1.5	0.6	1.5	0.6	1.5	
			5.5	0.7	1.4	1.7	0.7	1.7	0.7	1.7	
V_{OH}	High-Level Output Voltage$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.65 to 5.5	$\mathrm{V}_{\mathrm{CC}}-0.1$	V_{CC}	-	$\mathrm{V}_{C C}-0.1$	-	$\mathrm{V}_{C C}-0.1$	-	V
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.65	1.29	1.52	-	1.29	-	1.29	-	
		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.3	1.9	2.1	-	1.9	-	1.9	-	
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2	2.4	-	2.2	-	2.2	-	
		$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	3	2.4	2.7	-	2.4	-	2.4	-	
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3	2.3	2.5	-	2.3	-	2.3	-	
		$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	4.5	3.8	4	-	3.8	-	3.8	-	
VoL	Low-Level Output Voltage $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	1.65 to 5.5	-	-	0.1	-	0.1	-	0.1	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	1.65	-	0.08	0.24	-	0.24	-	0.24	
		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	2.3	-	0.2	0.3	-	0.3	-	0.3	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7	-	0.22	0.4	-	0.4	-	0.4	
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	3	-	0.28	0.4	-	0.4	-	0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3	-	0.38	0.55	-	0.55	-	0.55	
		$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$	4.5	-	0.42	0.55	-	0.55	-	0.55	
I_{N}	Input Leakage Current	$\begin{aligned} & V_{\mathbb{I N}}=5.5 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$	1.65 to 5.5	-	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$	0	-	-	1	-	10	-	10	$\mu \mathrm{A}$
${ }^{\text {cc }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$	5.5	-	-	1	-	10	-	10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, A to Y (Figures 3 and 4)	$\begin{aligned} & \mathrm{RL}=1 \mathrm{M} \Omega, \\ & \mathrm{CL}=15 \mathrm{pF} \end{aligned}$	1.65 to 1.95	-	9.1	15	-	15.6	-	15.6	ns
		$\begin{aligned} & \mathrm{RL}=1 \mathrm{M} \Omega, \\ & \mathrm{CL}=15 \mathrm{pF} \end{aligned}$	2.3 to 2.7	-	5.0	9.0	-	9.5	-	9.5	
			3.0 to 3.6	-	3.7	6.3	-	6.5	-	6.5	
			4.5 to 5.5	-	3.1	5.2	-	5.5	-	5.5	
		$\begin{aligned} & \mathrm{RL}=500 \Omega, \\ & \mathrm{CL}=50 \mathrm{pF} \end{aligned}$	3.0 to 3.6	-	4.4	7.2	-	7.5	-	7.5	
			4.5 to 5.5	-	3.7	5.9	-	6.2	-	6.2	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4.0	pF
C_{PD}	Power Dissipation Capacitance (Note 5$)$	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	11	pF
		$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	12.5	

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\left.I_{C C(O P R)}=C_{P D} \cdot V_{C C} \cdot f_{i n}\right) I_{C C} \cdot C_{P D}$ is used to determine the no-load dynamic power consumption; $\left.P_{D}=C_{P D} \cdot V_{C C}{ }^{2} \cdot f_{i n}\right) I_{C C} \cdot V_{C C}$.

NL27WZ17

Test	Switch Position	C_{L}, pF	$\mathrm{R}_{\mathrm{L}}, \boldsymbol{\Omega}$	R_{1}, Ω
$\mathrm{tPLH} / \mathrm{t}_{\text {PHL }}$	Open	See AC Characteristics Table		
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$	-	-	-
		See AC Characteristics Table		
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND	-	-	-
		See AC Characteristics Table		

X = Don't Care
C_{L} includes probe and jig capacitance
R_{T} is $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
$\mathrm{f}=1 \mathrm{MHz}$
Figure 3. Test Circuit

Figure 4. Switching Waveforms

$\mathbf{v}_{\mathbf{C C}}, \mathbf{v}$	$\mathbf{V}_{\mathbf{m o}}, \mathbf{V}$			
			$\mathbf{t}_{\mathbf{P Z L}}, \mathbf{t}_{\mathbf{P L Z}}, \mathbf{t}_{\mathbf{P Z H}}, \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{v}_{\mathbf{Y},} \mathbf{v}$
	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
2.3 to 2.7	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
3.0 to 3.6	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3
4.5 to 5.5	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3

ORDERING INFORMATION

Device	Package	Specific Device Code	Pin1 Orientation (See below)	Shipping †
NL27WZ17DFT2G	SC-88	MX	Q4	$3000 /$ Tape \& Reel
NLV27WZ17DFT2G*	SC-88	MX	Q4	$3000 /$ Tape \& Reel
NL27WZ17DBVT1G	SC-74	AC	Q4	$3000 /$ Tape \& Reel
NL27WZ17MU1TCG	UDFN6 $1.45 \times 1.0,0.5 P$	K (Rotated $\left.90^{\circ} \mathrm{CW}\right)$	Q4	$3000 /$ Tape \& Reel
NL27WZ17MU3TCG	UDFN6 $1.0 \times 1.0,0.35 P$	D	Q4	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Pin 1 Orientation in Tape and Reel
Direction of Feed

SC-74
CASE 318F
ISSUE P
SCALE 2:1

[^0]

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^1] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

UDFN6, 1.45x1.0, 0.5P CASE 517AQ

ISSUE O
DATE 15 MAY 2008

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

DETAIL B OPTIONAL CONSTRUCTIONS

MOUNTING FOOTPRINT

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC

MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON30313E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6, 1.45x1.0, 0.5P | PAGE 1 OF 1 |

[^2]UDFN6, 1x1, 0.35P
CASE 517BX
ISSUE O
DATE 18 MAY 2011

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56787E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN6, 1x1, 0.35P		PAGE 1 OF 1

[^3]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

[^0]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^2]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^3]: onsemi and OnSemil are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

