NL3S22S

USB 2.0 + Audio Switch

The NL3S22S is a double-pole/double-throw (DPDT) analog switch for routing high speed differential data and audio. The high-speed data path is compliant with High Speed USB 2.0, Full Speed USB 1.1, Low Speed USB 1.0 and any generic UART protocol. The multi-purpose audio path is capable of passing signals with negative voltages as low as 2 V below ground and features shunt resistors to reduce Pop and Click noise in the audio system.

Features

- V_{CC} Range: 2.7 V to 5.5 V
- Control Pins Compatible with 1.8 V Interfaces
- $I_{C C}: 23 \mu \mathrm{~A}$ (Typ)
- ESD Performance: 4 kV HBM
- Available in1.4 mm x 1.8 mm UQFN10
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

High Speed Data Path

- Input Signal Range: 0 V to 3.7 V
- $\mathrm{R}_{\mathrm{DS}(\mathrm{on}):} 5 \Omega$ (Typ)
- CON: 4.5 pF (Typ)
- Data Rate: USB 2.0-Compliant - up to 480 Mbps

Audio Path

- Input Signal Range: -2.0 V to 2.0 V
- $\mathrm{R}_{\mathrm{DSON}}: 3 \Omega$ (Typ)
- $\mathrm{R}_{\mathrm{ON}(\mathrm{FLAT})}: 0.002 \Omega$ (Typ)
- THD: $0.002 \%\left(\mathrm{R}_{\mathrm{L}}=16 \Omega / \mathrm{V}_{\mathrm{IS}}=0.4 \mathrm{~V}_{\mathrm{RMS}}\right)$

Applications

- Smartphones
- Tablets
- USB 2.0 Hosts/Peripherals
- Audio / High-Speeds Data Switching

ON Semiconductor ${ }^{\circledR}$ www.onsemi.com

AW = Device Code
$\mathrm{M}=$ Date Code

- = Pb-Free Device
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NL3S22SMUTAG	UQFN10 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NL3S22S

Figure 1. Block Diagram

FUNCTION TABLE

EN	SEL	Shunt Status	D+/D- Function
0	X	ON	No Connect
1	0	OFF	AUDP/AUDN
1	1	ON	HDP/HDN

Figure 2. UQFN10 - Top Through View

PIN DESCRIPTION

Pin Name	Pin	
V_{CC}	1	Power Supply
HDN	2	Hescription Speed Differential Data (-)
AUDN	3	Audio Signal (-)
SEL	4	Function Select
D-	5	Audio/Data Common I/O (-)
GND	6	Ground
D+	7	Audio/Data Common I/O (+)
EN	8	Chip Enable
AUDP	9	Audio Signal (+)
HDP	10	High Speed Differential Data (+)

NL3S22S

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.3 to +6	V
$\mathrm{V}_{\text {IS }}$	Analog Input/Output Voltage HDP, HDN	-0.3 to +5.5	V
	AUDP, AUDN	-2.5 to $\mathrm{V}_{\mathrm{CC}}+0.3$	
	D+, D-	-2.5 to +5.5	
$\mathrm{V}_{\text {IN }}$	Digital Control Pin Voltage on EN, SEL	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
T_{s}	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity (Note 1)	Level 1	
ILU	Latchup Current (Note 2)	± 100	mA
ESD	ESD Protection (Note 3) Human Body Model	4000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.
2. Latch up Current Maximum Rating: $\pm 100 \mathrm{~mA}$ per JEDEC standard: JESD78.
3. This device series contains ESD protection and passes the following tests:

Human Body Model (HBM) $\pm 4.0 \mathrm{kV}$ per JEDEC standard: JESD22-A114 for all pins.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CCEN }}$	Positive DC Supply Voltage	2.7	5.5	V
$\mathrm{~V}_{\text {IS }}$	Switch Input / Output Voltage (Note 4)	HDP, HDN	0	3.7
		AUDP, AUDN	-2.0	2.0
		$\mathrm{D}+, \mathrm{D}-$	-2.0	3.7
$\mathrm{~V}_{\text {IN }}$	Digital Control Input Voltage	GND	V_{CC}	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

4. f the audio channel is not in use, it is recommended that no signals are applied on the audio inputs AUDN and AUDP.

DC ELECTRICAL CHARACTERISTICS (Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40{ }^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

POWER SUPPLY

$I_{\text {CC }}$	Supply Current	$\mathrm{I}_{\mathrm{IS}}=0 \mathrm{~mA}$	4.2	-	23	105	$\mu \mathrm{~A}$

Control Logic (EN, SEL)

V_{IH}	Input High Voltage		4.2	1.5	-	-	V
			3.6	1.4	-	-	
			2.7	1.3	-	-	
V_{IL}	Input Low Voltage		4.2	-	-	0.4	V
			3.6	-	-	0.4	
			2.7	-	-	0.4	
$\mathrm{~V}_{\mathrm{IHYS}}$	Input Hysteresis		$2.7-5.5$	-	250	-	mV
I_{IN}	Leakage Current		$2.7-5.5$	-	-	± 150	nA

AUDIO SWITCH (AUDP/AUDN \leftrightarrow D+/D-)

R_{ON}	ON-Resistance	$\mathrm{V}_{\mathrm{IS}}=-2.0 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=50 \mathrm{~mA}$	3.0	-	3	5	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON-Resistance Matching Between Channels	$\mathrm{V}_{\mathrm{IS}}=-2.0 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=50 \mathrm{~mA}$	3.0	-	0.05	-	Ω
$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	ON Resistance Flatness	$\mathrm{V}_{\mathrm{IS}}=-2.0 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=50 \mathrm{~mA}$	3.0	-	0.002	-	Ω
R_{SH}	Shunt Resistance		3.6	-	125	200	Ω

DATA SWITCH (HDP/HDN \leftrightarrow D+/D-)

$\mathrm{R}_{\text {ON }}$	ON-Resistance	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$ to $1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}$	3.0	-	5	7.5	Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON-Resistance Matching Between Channels	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$ to $1.7 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$	3.0	-	0.02	-	Ω
$\mathrm{R}_{\text {FLAT(ON) }}$	ON Resistance Flatness	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$ to $1.7 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$	3.0	-	0.003	-	Ω
$\mathrm{I}_{\text {SW(OFF) }}$	OFF-State Leakage	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$ to 3.6	3.6	-	-	200	nA
$\mathrm{I}_{\text {SW(ON) }}$	ON-State Leakage	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$ to 3.6	3.6	-	-	± 200	nA

AC ELECTRICAL CHARACTERISTICS (Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40{ }^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

AUDIO SWITCH (AUDP/AUDN \leftrightarrow D+/D-)

THD	Audio THD	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IS}}=0.4 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{DC} \text { Bias }=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega \end{aligned}$	$2.7-5.5$	-	0.002	-	\%
PSRR	Power Supply Ripple Rejection	From V_{CC} unto AUDP/AUDN, $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=16 \Omega$	$2.7-5.5$	-	118	-	dB

DATA SWITCH (HDP/HDN \leftrightarrow D+/D-)

$\mathrm{Con}^{\text {O }}$	Equivalent ON-Capacitance	Switch ON, $\mathrm{f}=1 \mathrm{MHz}$	3.6	-	4.84	-	pF
$\mathrm{C}_{\text {OFF }}$	Equivalent OFF-Capacitance	Switch OFF, $\mathrm{f}=1 \mathrm{MHz}$	3.6	-	2.06	-	pF
$\mathrm{D}_{\text {IL }}$	Differential Insertion Loss	$\begin{aligned} & f=10 \mathrm{MHz} \\ & \mathrm{f}=800 \mathrm{MHz} \\ & \mathrm{f}=1.1 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 2.7-5.5 \\ & 2.7-5.5 \\ & 2.7-5.5 \end{aligned}$	-	$\begin{aligned} & -0.42 \\ & -1.89 \\ & -3.01 \end{aligned}$		dB
$\mathrm{D}_{\text {ISO }}$	Differential Off-Isolation	$\begin{aligned} & f=10 \mathrm{MHz} \\ & \mathrm{f}=800 \mathrm{MHz} \\ & \mathrm{f}=1.1 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 2.7-5.5 \\ & 2.7-5.5 \\ & 2.7-5.5 \end{aligned}$	-	$\begin{aligned} & \hline-60 \\ & -15 \\ & -15 \end{aligned}$		dB
$\mathrm{D}_{\text {CTK }}$	Differential Crosstalk	$\begin{aligned} & f=10 \mathrm{MHz} \\ & \mathrm{f}=800 \mathrm{MHz} \\ & \mathrm{f}=1.1 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 2.7-5.5 \\ & 2.7-5.5 \\ & 2.7-5.5 \end{aligned}$		$\begin{aligned} & -67 \\ & -23 \\ & -19 \end{aligned}$		dB
PSRR	Power Supply Ripple Rejection	From V_{CC} unto $\mathrm{D}+/ \mathrm{D}-$, $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	2.7-5.5	-	108	-	dB
DYNAMIC TIMING							
$t_{\text {PD }}$	Propagation Delay (Notes 5 and 6)	$\mathrm{V}_{\mathrm{NOn}}$ or $\mathrm{V}_{\mathrm{NCn}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$,	$2.7-5.5$	-	0.25	-	ns
t_{ON}	Turn-On Time	$\mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}$ (fixture only) EN or SEL to AUDP/AUDN EN or SEL to HDP/HDN	$2.7-5.5$	-	$\begin{aligned} & 2.2 \\ & 6.2 \end{aligned}$	-	$\mu \mathrm{S}$
tofF	Turn-Off Time	$\mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}$ (fixture only) EN or SEL to AUDP/AUDN EN or SEL to HDP/HDN	$2.7-5.5$	-	$\begin{gathered} 67 \\ 1200 \end{gathered}$	-	ns
$\mathrm{t}_{\text {sk(b-b) }}$	Bit to bit skew	Within the same differential channel	2.7-5.5	-	5	-	ps
$\mathrm{t}_{\mathrm{sk}}(\mathrm{ch}-\mathrm{ch})$	Channel to channel skew	Maximum skew between all channels	2.7-5.5	-	5	-	ps

5. Guaranteed by design.
6. No other delays than the RC network formed by the load resistance and the load capacitance of the switch are added on the bus. For a 10 pF load, this delay is 5 ns which is much smaller than rise and fall time of typical driving systems. Propagation delays on the bus are determined by the driving circuit on the driving side and its interactions with the load of the driven side.

PARAMETER MEASUREMENT INFORMATION

Figure 3. Differential Insertion Loss ($\mathrm{S}_{\mathrm{DD} 21}$)

Figure 5. Differential Crosstalk (SDD21)

Figure 4. Differential Off Isolation (S $\mathbf{S D 2 1}$)

$\mathrm{t}_{\text {skew }}=\left|\mathrm{t}_{\mathrm{PLH} 1}-\mathrm{t}_{\mathrm{PLH} 2}\right|$ or $\left|\mathrm{t}_{\text {PHL1 }}-\mathrm{t}_{\text {PHL2 }}\right|$
Figure 6. Bit-to-Bit and Channel-to-Channel Skew

Figure 7. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$

Figure 8. Off State Leakage

Figure 9. On State Leakage

Figure 10. USB 2.0 High Speed Eye Diagram

Figure 12. USB 1.0 Low Speed Eye Diagram

Figure 14. Data Path On Resistance

Figure 11. USB 1.1 Full Speed Eye Diagram

Figure 13. Product Supply Current

Figure 15. Data Switch Differential Insertion Loss

NL3S22S

Figure 16. Data Switch Differential Off-Isolation

Figure 18. Audio Path On Resistance

Figure 17. Data Switch Differential Crosstalk

Figure 19. Audio THD

UQFN10 1.4x1.8, 0.4P
CASE 488AT-01
ISSUE A
DATE 01 AUG 2007
SCALE 5:1

BOTTOM VIEW

MOUNTING FOOTPRINT

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AIMENSION b APPLIES TO PLATED TERMINAL
ANEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40 .25	
E	1.80 BSC	
e	$0.40 ~ B S C ~$	
L	0.30	0.50
L1	0.00	0.15
L3	0.40	0.60

GENERIC MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " P ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22493D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN UQFN, 1.4 X 1.8, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX FT234XD-R PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE+ MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T

