NLAS1053

2:1 Mux/Demux Analog Switches

The NLAS1053 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. The device consists of a single 2:1 Mux/Demux (SPDT), similar to ON Semiconductor's NLAS4053 analog and digital voltages that may vary across the full power supply range (from V_{CC} to GND).

The inhibit and select input pins have over voltage protection that allows voltages above V_{CC} up to 7.0 V to be present without damage or disruption of operation of the part, regardless of the operating voltage.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=1 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Bandwidth, Improved Linearity, and Low RDS $_{\text {ON }}$
- INH Pin Allows a Both Channels ‘OFF' Condition (With a High)
- $\mathrm{RDS}_{\mathrm{ON}} \cong 25 \Omega$, Performance Very Similar to the NLAS4053
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- Useful For Switching Video Frequencies Beyond 50 MHz
- Latchup Performance Exceeds 300 mA
- ESD Performance: $\mathrm{HBM}>2000 \mathrm{~V} ; \mathrm{MM}>200 \mathrm{~V}, \mathrm{CDM}>1500 \mathrm{~V}$
- Tiny US8 Package, Only 2.1 X 3.0 mm
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pin Assignment

FUNCTION TABLE

INH	Select	Ch 0	Ch $\mathbf{1}$
H	X	OFF	OFF
L	L	ON	OFF
L	H	OFF	ON

\qquad

ORDERING INFORMATION

Device	Package	Shipping †
NLAS1053USG	US8 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Positive DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Digital Input Voltage (Select and Inhibit)	$\mathrm{V}_{\text {IN }}$	$-0.5 \leq \mathrm{V}$ is $\leq+7.0$	V
Analog Output Voltage (V_{CH} or $\mathrm{V}_{\mathrm{COM}}$)	$\mathrm{V}_{\text {IS }}$	$-0.5 \leq \mathrm{V}$ is $\leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
DC Current, Into or Out of Any Pin	$\mathrm{l}_{\text {IK }}$	50	mA
Storage Temperature Range	TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature under Bias	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\theta_{\text {JA }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	P_{D}	250	mW
Moisture Sensitivity	MSL	Level 1	
Flammability Rating Oxygen Index: 30\% - 35\%	F_{R}	UL 94 V-0 @ 0.125 in	
	$\mathrm{V}_{\text {ESD }}$	$\begin{gathered} >2000 \\ 200 \\ \text { N/A } \end{gathered}$	V
Latchup Performance \quad Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	$\mathrm{I}_{\text {Latchup }}$	± 300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
Positive DC Supply Voltage	V_{CC}	2.0	5.5	V
Digital Input Voltage (Select and Inhibit)	V_{IN}	GND	5.5	V
Static or Dynamic Voltage Across an Off Switch	V_{IO}	GND	V_{CC}	V
Analog Input Voltage (CH, COM)	V_{IS}	GND	V_{CC}	V
Operating Temperature Range, All Package Types	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Time (Enable Input)	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0	100	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME

 TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 2. Failure Rate versus Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition	Symbol	V_{Cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Select and Inhibit Inputs		V_{IH}	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 1.9 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 1.9 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 1.9 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
Maximum Low-Level Input Voltage, Select and Inhibit Inputs		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.6 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.6 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.6 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
Maximum Input Leakage Current, Select and Inhibit Inputs	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	1 N	0 V to 5.5 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Maximum Quiescent Supply Current	Select and Inhibit $=\mathrm{V}_{\text {CC }}$ or GND	I_{CC}	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	< $125^{\circ} \mathrm{C}$	
Maximum "ON" Resistance (Figures 17-23)	$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I H} \\ & V_{I S}=G N D \text { to } V_{C C} \\ & I_{I N} \leq 10.0 \mathrm{~mA} \end{aligned}$	RON	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 40 \\ & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 85 \\ & 46 \\ & 28 \\ & 22 \end{aligned}$	$\begin{gathered} \hline 105 \\ 52 \\ 34 \\ 28 \end{gathered}$	Ω
ON Resistance Flatness (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IN}^{\mathrm{N}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{FLAT}} \\ \text { (ON) } \end{gathered}$	4.5	4	4	5	Ω
ON Resistance Match Between Channels	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IN}_{\mathrm{N}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CH} 1} \text { or } \mathrm{V}_{\mathrm{CH} 0}=3.5 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{R}_{\mathrm{ON}}$ (ON)	4.5	2	2	3	Ω
CH1 or CH0 Off Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{CH} 1} \text { or } \mathrm{V}_{\mathrm{CHO}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CHO}} \\ & \mathrm{I}_{\mathrm{CH} 1} \end{aligned}$	5.5	1	10	100	nA
COM ON Leakage Current (Figure 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}}$ $\mathrm{V}_{\mathrm{CH} 1} 1.0 \mathrm{~V}$ or 4.5 V with $\mathrm{V}_{\mathrm{CH} 0}$ floating or $\mathrm{V}_{\mathrm{CH} 1} 1.0 \mathrm{~V}$ or 4.5 V with $\mathrm{V}_{\mathrm{CH} 1}$ floating $\mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V}$	ICOM(ON)	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Parameter	Test Conditions	Symbol	V_{cc} (V)	Guaranteed Max Limit					$<125^{\circ} \mathrm{C}$		Unit
				-55 to $25^{\circ} \mathrm{C}$			$<85{ }^{\circ} \mathrm{C}$				
				Min	Typ*	Max	Min	Max	Min	Max	
Turn-On Time (Figures 12 and 13) INH to Output	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	t_{ON}	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 12 \\ 10 \\ 9 \\ 8 \end{gathered}$	2 2 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
Turn-Off Time (Figures 12 and 13) INH to Output	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	tofF	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 12 \\ 10 \\ 9 \\ 8 \end{gathered}$	1 2 2 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	2 2 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
Transition Time (Channel Selection Time) (Figure) Select to Output	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures and)	$t_{\text {trans }}$	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 18 \\ 13 \\ 12 \\ 9 \end{gathered}$	$\begin{aligned} & 28 \\ & 21 \\ & 16 \\ & 14 \end{aligned}$	1 5 5 2 2	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	1 5 5 2 2	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	ns
Minimum Break-Before-Make Time	$\begin{aligned} & V_{I S}=3.0 \mathrm{~V} \text { (Figure } 3 \text {) } \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$t_{\text {BBM }}$	2.5 3.0 4.5 5.5	1 1 1 1	12 11 6 5		1 1 1 1 1		1 1 1 1		ns
			Typical @ 25, VCC = 5.0 V								
Maximum Input Capacitance, Select/INH Input Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on)		CIN C_{NO} or C_{NC} Com $\mathrm{C}_{(\mathrm{ON})}$	$\begin{gathered} \hline 8 \\ 10 \\ 10 \\ 20 \end{gathered}$								pF

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Parameter	Condition	Symbol	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Typical	Unit
				$25^{\circ} \mathrm{C}$	
Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	BW	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \\ & 200 \end{aligned}$	MHz
Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ONL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-3 \\ & -3 \\ & -3 \end{aligned}$	dB
Off-Channel Isolation (Figure 10)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \end{aligned}$	dB
Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \mathrm{to} \\ & \mathrm{t}_{\mathrm{r}} \mathrm{If}_{\mathrm{f}}=3 \mathrm{nd}, \mathrm{~F}_{I S}=20 \mathrm{kHz} \\ & \mathrm{R}_{I S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \pm \Delta \mathrm{V}_{\text {OUT }} \\ & \text { (Figure 8) } \end{aligned}$	Q	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{RL}=\text { Rgen }=600 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V} \text { PP } \text { sine wave } \end{aligned}$	THD	5.5	0.1	\%

Figure 3. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{tofF}_{\mathrm{of}}$

NLAS1053

Figure 6. $\mathrm{t}_{\text {trans }}$ (Channel Selection Time)

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VIN}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk
(On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage versus Temperature

Figure 11. Phase versus Frequency

Figure 13. t_{ON} and $\mathrm{t}_{\text {OFF }}$ versus Temp

Figure 10. Bandwidth and Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus V_{CC} at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise versus Frequency

Figure 15. Charge Injection versus COM Voltage

Figure 17. RoN versus $\mathrm{V}_{\mathrm{COM}}$ and $\mathrm{V}_{\mathrm{CC}}\left(@ 5^{\circ} \mathrm{C}\right.$

Figure 19. R_{ON} versus $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 16. I_{C} versus Temp, $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V} \& 5 \mathrm{~V}$

Figure 18. R_{ON} versus $\mathrm{V}_{\mathrm{COM}}$ and Temperature,
$\mathrm{V}_{\mathrm{Cc}} 2.0 \mathrm{~V}$

Figure 20. \mathbf{R}_{ON} versus $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 21. R_{ON} versus $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 22. R_{ON} versus $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 23. R_{ON} versus $\mathrm{V}_{\text {COM }}$ and Temperature,

$$
\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}
$$

SCALE $4: 1$

strategy and soldertio detalls, pleaze
dominoad the ON Senconductor soldering and
Mounting Techniques Reference Manual,
Moonnoad the ON Senticoncuctor Soldering an
MOUNERRNHD.
NDTES:

1. DIMENSIONING AND TQLERANCING PER ANSI Y14.5M, 1982.
2. CINTRILLING DIMENSİN: MILLIMETERS
3. Dimensian a daes nat include mald flash, pratrusidn, ar Gate burr. mald flash, pratrusion, ar gate burr SHALL NOT EXCEED 0.14 (0.0055°) PER SIDE.
4. Dimensian b daes nat include interlead flash ar pratrusicn. interlead flash and pratrusinn shall nat EXCEED 0.14 (0.0055°) PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH THICKNESS DF $0.0076-0.0203$ MM ($0.003-0.008^{\circ}$).
6. ALL TOLERANCE UNLESS \quad aTHERWISE SPECIFIED ± 0.0508 MM (0.000°).

DIM	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN	MAX.
A	1.90	2.10	0.075	0.083
B	2.20	2.40	0.087	0.094
C	0.60	0.90	0.024	0.035
D	0.17	0.25	0.007	0.010
F	0.20	0.35	0.008	0.014
G	0.50 BSC		0.020 BSC	
H	0.40 REF		0.016 REF	
J	0.10	0.18	0.004	0.007
K	0.00	0.10	0.000	0.004
L	3.00	3.25	0.118	0.128
M	$0{ }^{\circ}$	6°	0°	6°
N	$0 \times$	10°	0°	10°
P	0.23	0.34	0.010	0.013
R	0.23	0.33	0.009	0.013
S	0.37	0.47	0.015	0.019
U	0.60	0.80	0.024	0.031
V	0.12 BSC		0.005 BSC	

GENERIC MARKING DIAGRAM*

XX	$=$ Specific Device Code
M	$=$ Date Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AONO4475D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | US8 | PAGE 1 OF 1 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 TC4066BP-NF HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW.112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1439BRUZ

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

