Low Voltage Dual SPDT Analog Switch with Negative Swing Audio Capability

The NLAS2750 is a dual SPDT low on–resistance analog switch. It can operate from a single 1.8 V to 5.0 V power supply. It is a bi–directional switch that can switch a negative voltage swing audio signal without requiring a coupling capacitor. With a single power supply, the audio signal can swing over the range from –2.5 V to V_{CC} .

Features

- Capable to Switch Negative Swing Audio Signals Without Requiring a DC Blocking Capacitor
- Low On-resistance (R_{ON})
- Low Voltage Digital Control Logic: (V_{INH} = 1.4 V @ V_{CC} = 2.7 V to 4.3 V)
- Low Power Consumption ($I_{CC} \le 250 \text{ nA}$)
- Space Saving 1.4 mm x 1.8 mm Package UQFN Package
- This is a Pb-Free Device

Typical Applications

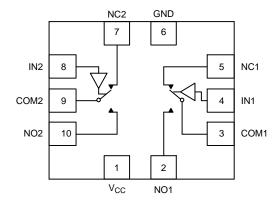
- Cellular Phones
- Portable Media Players

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

UQFN10 CASE 488AT



AL = Specific Device Code

M = Date Code/Assembly Location

= Pb-Free Device

(Note: Microdot may be in either location)

FUNCTION TABLE

IN1 (Pin 4)	IN2 (Pin 8)	Function
0	Х	COM1 = NC1
1	Х	COM1 = NO1
X	0	COM2 = NC2
Х	1	COM2 = NO2

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

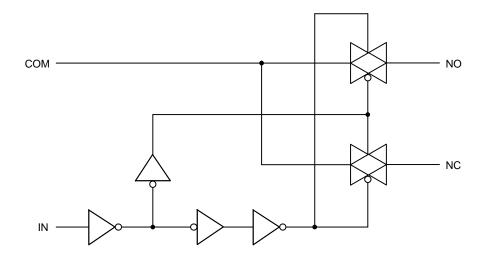


Figure 1. Logic Equivalent Circuit

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.3 to +6.5	V
V _{IS}	Analog Input Voltage (COM, NO, NC) (Notes 1 and 2)		V
V _{IN}	Digital (IN1, IN2)	-0.3 to +6.5	V
I _{CC}	Current (GND, V _{CC})	50	mA
I _{IS}	Continuous Switch Current (COM, NO, NC) (Note 1)	±250	mA
I _{ISP}	Peak Switch Current (Pulsed at 1 ms, 10% Duty Cycle)	±500	mA
T _{STG}	Storage Temperature	-65 to +150	°C
P_{D}	Power Dissipation	200	mW
V _{ESD}	ESD (Human Body Model) All pins I/O to GND	6 8	kV
I _{LU}	Latch-up (per JESD78)	300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Signals on COM, NO, NC, exceeding V_{CC} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

- 2. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum is used in this data sheet.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}			5.5	V
V _{IN}			5.5	V
V _{IS}	Analog Input Voltage (NC, NO, COM) (Note 3)		V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Time (IN1, IN2) $V_{CC} < 2.7 \text{ V}$ $V_{CC} \ge 2.7 \text{ V}$		20 10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3. The voltage across the switch should be ≤ 5.5 V.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 2.7 \text{ V}, \pm 10\%$) (Note 4)

			Guaranteed Maximum Limit -40°C to 85°C			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
ANALOG SWIT	СН					-
V _{IS}	Analog Signal Range (Note 5)		-2.5		V _{CC}	V
R _{DS(on)}	On–Resistance	V 27V		0.6	1.3	Ω
ΔR_{ON}	On–Resistance Match	$V_{CC} = 2.7 \text{ V},$ $V_{IS} = (V_{CC} - 4.5 \text{ V}), -1 \text{ V}, 0 \text{ V}$ $1 \text{ V}, 2 \text{ V}, V_{CC}$		0.1		Ω
R _{ON} Flatness	On–Resistance Resistance Flatness	1 V, 2 V, V _{CC} I _{IS} = 100 mA		0.37		Ω
I _{NO/NC(off)}	Switch Off Leakage Current	V27V		50		nA
I _{COM(off)}		$V_{CC} = 2.7 \text{ V},$ $V_{NC/NO} = -2.5 \text{ V or } 2.5 \text{ V},$ $V_{COM} = 2.5 \text{ V or } -2.5 \text{ V}$			±250	nA
I _{COM(on)}	Channel On Leakage Current	$V_{COM} = 2.5 \text{ V or } -2.5 \text{ V}$		50	±250	nA
DIGITAL CONT	ROL					
V_{INH}	Input Voltage High	V _{CC} = 5 V V _{CC} = 2.7 V to 4.3 V	1.6 1.4			V
V_{INL}	Input Voltage Low	V _{CC} = 2.7 V to 5 V			0.6	V
C _{IN}	Input Capacitance			5		pF
I _{INL} or I _{INH}	Input Current	V _{IN} = 0 or V _{CC}			±1	μΑ
POWER CONSI	UMPTION		-	-	-	
I _{CC}	Maximum Quiescent Supply Current	V _{CC} = 2.7 V to 4.3 V		50	±250	nA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Typical values are measured at 25°C and are for design aid only, not guaranteed nor subject to production testing.

DYNAMIC CHARACTERISTICS ($V_{CC} = 2.7 \text{ V}, \pm 10\%$) (Note 4)

			Guaranteed Maximum Limit		m Limit	
			-40°C to 85°C			1
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{BBM}	Break-Before-Make Time (Notes 6 and 7)		1000	1250		ns
t _{ON(EN)}	Enable Turn-On Time (Notes 6 and 7)	V_{CC} = 2.7 V, V_{IS} = 1.5 V, R_L = 50 Ω , C_L = 35 pF		80	150	ns
t _{OFF(EN)}	Enable Turn-Off Time (Notes 6 and 7)			110	130	ns
Q_{INJ}	Charge Injection (Note 6)	C_L = 1 nF, R_{GEN} = 0 Ω , V_{GEN} = 0 V		60		рС
OIRR	Off-Isolation (Note 6)	$V_{CC} = 2.7 \text{ V}, R_L = 50 \Omega,$		-58		dB
X _{TALK}	Crosstalk (Notes 6 and 8)	$C_L = 5 \text{ pF, f} = 300 \text{ kHz}$		-61		dB
BW	Bandwidth (Note 6)	V_{CC} = 2.7 V, R_L = 50 Ω , -3 dB		44		MHz
C _{NC/NO(off)}	Channel-Off Capacitance (Note 6)	V 07V4 4MIL		25		pF
C _{COM/NC/NO(on)}	Channel-On Capacitance (Note 6)	V _{CC} = 2.7 V, f = 1 MHz		75		pF

^{6.} Guaranteed by design, not subject to production testing.
7. V_{IS} = input voltage to perform proper function.
8. Crosstalk Measured between channels.

^{5.} Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTICS

(25°C, unless otherwise specified)

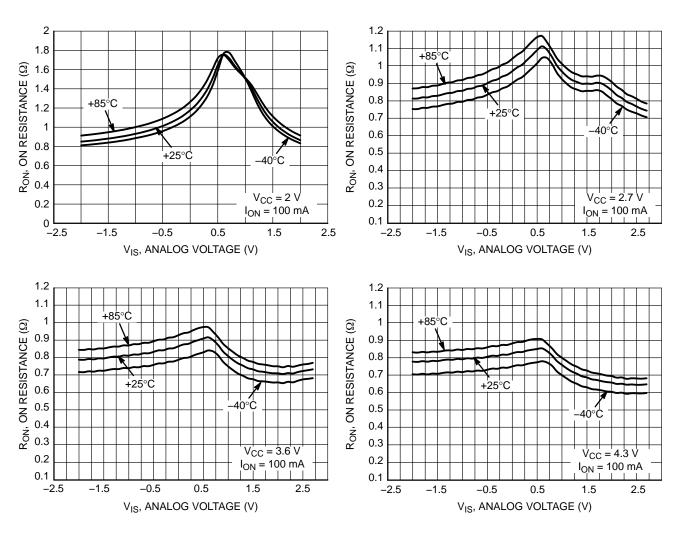


Figure 2. On Resistance (R_{ON}) vs. Analog Input Voltage (V_{IS})

TYPICAL CHARACTERISTICS

(25°C, unless otherwise specified)

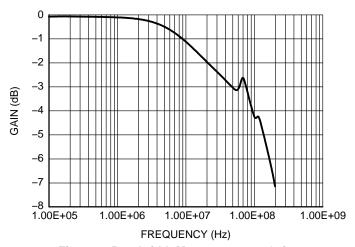
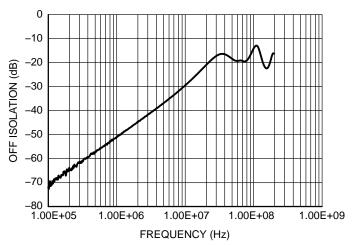



Figure 3. Bandwidth Measurement – Gain vs. Frequency

Figure 4. Off Isolation Measurement

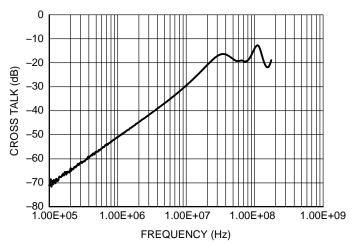
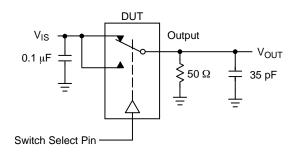



Figure 5. Cross Talk Measurement

TEST CIRCUITS

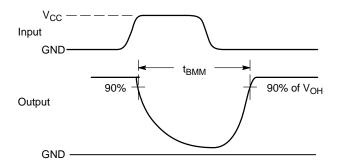
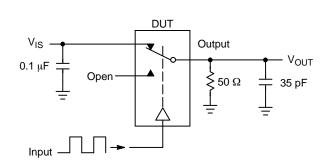



Figure 6. t_{BBM} (Time Break-Before-Make)

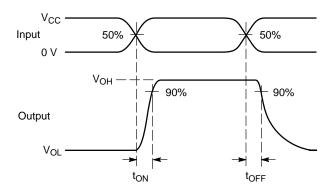
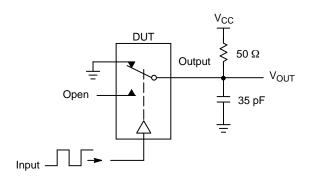



Figure 7. t_{ON}/t_{OFF}

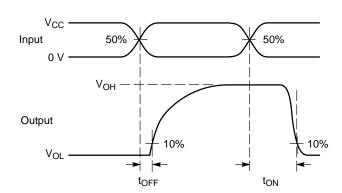
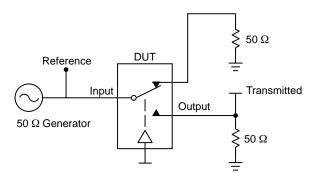



Figure 8. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $V_{\rm ISO}$, Bandwidth and $V_{\rm ONL}$ are independent of the input signal direction.

$$V_{ISO} = Off Channel Isolation = 20 Log \left(\frac{V_{OUT}}{V_{IN}}\right)$$
 for V_{IN} at 100 kHz

$$V_{ONL}$$
 = On Channel Loss = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz to 50 MHz

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 9. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

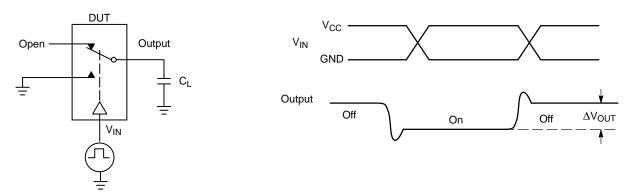
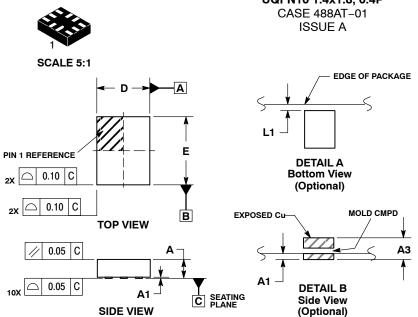



Figure 10. Charge Injection: (Q)

ORDERING INFORMATION

Device	Package	Shipping [†]
NLAS2750MUTAG	UQFN10 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

UQFN10 1.4x1.8, 0.4P

DATE 01 AUG 2007

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
- FROM TERMINAL.

 COPLANARITY APPLIES TO THE EXPOSED PAD
 AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
Α	0.45	0.60
A1	0.00	0.05
A3	0.127	REF
b	0.15	0.25
D	1.40	BSC
E	1.80	BSC
е	0.40	BSC
L	0.30	0.50
L1	0.00	0.15
L3	0.40	0.60

GENERIC MARKING DIAGRAM*

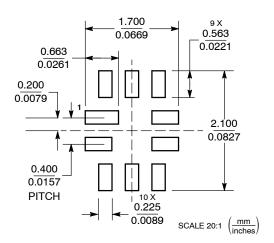
XX = Specific Device Code

= Date Code М

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.


MOUNTING FOOTPRINT

BOTTOM VIEW

10 X

Œ 0.05 С

0.10 C A B

DOCUMENT NUMBER:	98AON22493D	Electronic versions are uncontrolled except when accessed directly from the Document I Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	10 PIN UQFN. 1.4 X 1.8. 0.4	iP	PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G
PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX
PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G
RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T
MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G
NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4
ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118 ISL43410IUZ