NLAS2750

Low Voltage Dual SPDT Analog Switch with Negative Swing Audio Capability

The NLAS2750 is a dual SPDT low on-resistance analog switch. It can operate from a single 1.8 V to 5.0 V power supply. It is a bi-directional switch that can switch a negative voltage swing audio signal without requiring a coupling capacitor. With a single power supply, the audio signal can swing over the range from -2.5 V to V_{CC}.

Features

- Capable to Switch Negative Swing Audio Signals Without Requiring a DC Blocking Capacitor
- Low On-resistance (R_{ON})
- Low Voltage Digital Control Logic:
$\left(\mathrm{V}_{\mathrm{INH}}=1.4 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to 4.3 V$)$
- Low Power Consumption ($\mathrm{I}_{\mathrm{CC}} \leq 250 \mathrm{nA}$)
- Space Saving 1.4 mm x 1.8 mm Package UQFN Package
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Cellular Phones
- Portable Media Players

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

AL = Specific Device Code
M = Date Code/Assembly Location
= Pb-Free Device
(Note: Microdot may be in either location)

FUNCTION TABLE

IN1 (Pin 4)	IN2 (Pin 8)	Function
0	X	COM1 $=$ NC1
1	X	COM1 $=$ NO1
X	0	COM2 $=$ NC2
X	1	COM2 $=$ NO2

ORDERING INFORMATION
See detailed ordering and shipping information on page 7 of this data sheet.

Figure 1. Logic Equivalent Circuit

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.3 to +6.5	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (COM, NO, NC) (Notes 1 and 2)	Min. $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}-6.5 \mathrm{~V}$ or -2.5 V (whichever is greater) Max. $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V
$\mathrm{V}_{\text {IN }}$	Digital (IN1, IN2)	-0.3 to +6.5	V
ICC	Current (GND, $\mathrm{V}_{\text {CC }}$)	50	mA
IIS	Continuous Switch Current (COM, NO, NC) (Note 1)	± 250	mA
IISP	Peak Switch Current (Pulsed at 1 ms , 10\% Duty Cycle)	± 500	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation	200	mW
$\mathrm{V}_{\text {ESD }}$	ESD (Human Body Model) All pins I/O to GND	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	kV
ILU	Latch-up (per JESD78)	300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Signals on COM, NO, NC, exceeding V_{CC} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum is used in this data sheet.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Power Supply Range	1.8	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage Overvoltage Tolerance (OVT) (IN1, IN2)	GND	5.5	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NC, NO, COM) (Note 3)	-2.5	$\mathrm{V}_{\text {CC }}$	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time (IN1, IN2) $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$		$\begin{aligned} & 20 \\ & 10 \end{aligned}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. The voltage across the switch should be $\leq 5.5 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \pm 10 \%\right)$ (Note 4)

Symbol	Parameter	Test Conditions	Guaranteed Maximum Limit			Unit
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			
			Min	Typ	Max	

ANALOG SWITCH

$V_{\text {IS }}$	Analog Signal Range (Note 5)		-2.5		V_{CC}	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	On-Resistance	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \\ \mathrm{~V}_{I S}=(\mathrm{V} \mathrm{VC}-4.5 \mathrm{~V}),-1 \mathrm{~V}, 0 \mathrm{~V} \\ 1 \mathrm{~V}, 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$		0.6	1.3	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match			0.1		Ω
R ${ }_{\text {ON }}$ Flatness	On-Resistance Resistance Flatness			0.37		Ω
$\mathrm{I}_{\text {NO/NC(off) }}$	Switch Off Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=-2.5 \mathrm{~V} \text { or } 2.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=2.5 \mathrm{~V} \text { or }-2.5 \mathrm{~V} \end{gathered}$		50		nA
$\mathrm{I}_{\text {COM(off) }}$					± 250	nA
ICOM(on)	Channel On Leakage Current			50	± 250	nA

DIGITAL CONTROL

$\mathrm{V}_{\mathrm{INH}}$	Input Voltage High	1.6 $\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ 1.4			V
$\mathrm{~V}_{\mathrm{INL}}$	Input Voltage Low	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 4.3 V to 5 V			0.6
C_{IN}	Input Capacitance			5	V
$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$	Input Current	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{CC}			± 1

POWER CONSUMPTION

| $I_{\text {CC }}$ | Maximum Quiescent Supply
 Current | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 4.3 V | 50 | ± 250 | nA |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Typical values are measured at $25^{\circ} \mathrm{C}$ and are for design aid only, not guaranteed nor subject to production testing.
5. Guaranteed by design, not subject to production testing.

DYNAMIC CHARACTERISTICS (VCC $=2.7 \mathrm{~V}, \pm 10 \%)$ (Note 4)

Symbol	Parameter	Test Conditions	Guaranteed Maximum Limit			Unit
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			
			Min	Typ	Max	
$t_{\text {BBM }}$	Break-Before-Make Time (Notes 6 and 7)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{I S}=1.5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	1000	1250		ns
ton(EN)	Enable Turn-On Time (Notes 6 and 7)			80	150	ns
toff(EN)	Enable Turn-Off Time (Notes 6 and 7)			110	130	ns
Q ${ }_{\text {INJ }}$	Charge Injection (Note 6)	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{gathered}$		60		pC
OIRR	Off-Isolation (Note 6)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=300 \mathrm{kHz} \end{gathered}$		-58		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk (Notes 6 and 8)			-61		dB
BW	Bandwidth (Note 6)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega,-3 \mathrm{~dB}$		44		MHz
$\mathrm{C}_{\mathrm{NC/} / \mathrm{NO} \text { (off) }}$	Channel-Off Capacitance (Note 6)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		25		pF
$\mathrm{C}_{\text {COM/NC/NO(on) }}$	Channel-On Capacitance (Note 6)			75		pF

[^0]TYPICAL CHARACTERISTICS
$\left(25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Figure 2. On Resistance ($\mathrm{RON}_{\mathrm{O}}$) vs. Analog Input Voltage (V_{IS})

TYPICAL CHARACTERISTICS

$\left(25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Figure 3. Bandwidth Measurement - Gain vs. Frequency

Figure 4. Off Isolation Measurement

Figure 5. Cross Talk Measurement

TEST CIRCUITS

Figure 6. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 7. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 8. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 9. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 10. Charge Injection: (Q)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NLAS2750MUTAG	UQFN10	(Pb-Free)

[^1]

UQFN10 1.4x1.8, 0.4P
CASE 488AT-01
ISSUE A
DATE 01 AUG 2007
SCALE 5:1

BOTTOM VIEW

MOUNTING FOOTPRINT

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AIMENSION b APPLIES TO PLATED TERMINAL
ANEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40 .25	
E	1.80 BSC	
e	$0.40 ~ B S C ~$	
L	0.30	0.50
L1	0.00	0.15
L3	0.40	0.60

GENERIC MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " P ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22493D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN UQFN, 1.4 X 1.8, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

[^0]: 6. Guaranteed by design, not subject to production testing.
 7. $\mathrm{V}_{I S}=$ input voltage to perform proper function.
 8. Crosstalk Measured between channels.
[^1]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

