NLAS3157, NLAS3257

Low Voltage SPDT Mux / Demux Analog Switch

The NLAS3157 Mux / Demux Analog Switch is an advanced highspeed single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching. The control input, S, is independent of supply voltage line switch in an ultra-small footprint.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=0.25 \mathrm{~ns}(\mathrm{Max}) @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}: 8.5 \Omega$ Typ @ $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
- $\mathrm{C}_{\mathrm{ON}}: 7.5 \mathrm{pF}$ Typ @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- V_{CC} Range: 1.65 V to 4.5 V
- Ultra-Small $1 \times 1 \mathrm{~mm}$ Package
- This Device is $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and RoHS Compliant

Typical Applications

- Mobile Phones, PDAs, Camera

Figure 1. ULLGA6
(NLAS3157)
(Top View)

Figure 2. XLLGA6
(NLAS3257)
(Top View)

Figure 3. Logic Diagram

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

	MARKING DIAGRAMS
$\begin{aligned} & Y \\ & M \end{aligned}$	= Specific Device Code = Date Code
	XLLGA6 1.0 $\times 1.0$ CASE 713AD LM
$\begin{aligned} & \mathrm{L} \\ & \mathrm{M} \end{aligned}$	$=$ Specific Device Code = Date Code

FUNCTION TABLE

Input S	Function
L	$A=B 0$
H	$A=B 1$

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Table 1. MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage (S Pin)	-0.5 to +5.5	V
$\mathrm{V}_{\text {IS }}$	Switch Input / Output Voltage (A, BO, B1 Pins)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIK	Control DC Input Diode Current (S Pin) $\mathrm{V}_{\text {IN }}<$ GND	-50	mA
lok	Switch I/O Port DC Diode Current (A, BO, B1 Pins) $\quad \mathrm{V}_{\text {I/O }}<\mathrm{GND}$ or $\mathrm{V}_{\text {I/O }}>\mathrm{V}_{\mathrm{CC}}$	± 50	mA
Io	On-State Switch Current	± 128	mA
	Continuous Current Through $\mathrm{V}_{\text {CC }}$ or GND	± 150	mA
$\mathrm{I}_{\text {CC }}$	DC Supply Current per Supply Pin	± 150	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1)	407	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ (Note 1)	1.5	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Mode (Note 2) Machine Mode (Note 3) Charged Device Mode (Note 4)	$\begin{aligned} & \hline>8000 \\ & >300 \\ & >2000 \end{aligned}$	V
l LATCHUP	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA/ JESD22-A114-A
3. Tested to EIA/ JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA / JESD78

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		1.65	4.5	V
V_{1}	Control Input Voltage (S Pin)		0	4.5	V
$\mathrm{V}_{\text {IS }}$	Switch Input / Output Voltage (A, BO, B1 Pins)		0	V_{CC}	V
T_{A}	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate	Control Input Switch I/O	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 5 \\ \text { DC } \end{gathered}$	ns / V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

NLAS3157, NLAS3257

Table 3. DC ELECTRICAL CHARACTERISTICS (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
V_{IH}	Control Input, HIGH Voltage		$\begin{aligned} & 1.65 \\ & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \hline 0.75 \\ & 1.25 \\ & 1.52 \\ & 1.94 \end{aligned}$			V
$\mathrm{V}_{\text {IL }}$	Control Input, LOW Voltage		$\begin{gathered} 1.65 \\ 2.7 \\ 3.3 \\ 4.2 \end{gathered}$			$\begin{gathered} \hline 0.25 \\ 0.4 \\ 0.4 \\ 0.5 \end{gathered}$	V
1 N	Control Input, Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\mathrm{CC}}$	1.65-4.5			± 1.0	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND; $\mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	1.65-4.5			1.0	$\mu \mathrm{A}$
${ }^{\text {I }} \mathrm{NC}$ (OFF) I_{NO} (OFF)	NC or NO Leakage Current	$\mathrm{V}_{\text {IS }}=1.65 \mathrm{~V}$ to 4.5 V	4.5		± 10	± 100	nA
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current	$\mathrm{V}_{\text {IS }}=1.65 \mathrm{~V}$ to 4.5 V	4.5		± 10	± 100	nA

ON RESISTANCE (Typical: $\mathbf{T}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

$\mathrm{R}_{\text {ON }}$	Peak On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 1.65 \\ & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{gathered} 15.4 \\ 10.8 \\ 9.5 \\ 8.5 \end{gathered}$	$\begin{gathered} \hline 23.2 \\ 12.4 \\ 11.0 \\ 9.9 \end{gathered}$	Ω
$\mathrm{R}_{\text {FLAT }}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} \hline 1.65 \\ 2.7 \\ 3.3 \\ 4.2 \end{gathered}$	$\begin{aligned} & \hline 5.5 \\ & 2.9 \\ & 2.7 \\ & 2.8 \end{aligned}$	$\begin{gathered} \hline 10.2 \\ 3.3 \\ 3.3 \\ 3.3 \end{gathered}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	Delta On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} 1.65 \\ 2.7 \\ 3.3 \\ 4.2 \end{gathered}$	$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

TIMING/FREQUENCY (Typical: $\mathrm{T}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=\mathbf{3 5 \mathrm { pF } , \mathrm { f } = 1 \mathrm { MHz } \text {) }}$

tpD	Propagation Delay, A to Bn or Bn to A	(See Figures 4 and 5)	$1.65-4.5$			0.25	ns
t_{ON}	Turn-ON Time	(See Figures 7 and 8)	$1.65-4.5$	3.1	13.0	30.0	ns
$\mathrm{t}_{\text {OFF }}$	Turn-OFF Time	(See Figures 7 and 8)	$1.65-4.5$	3.4	12.0	25.0	ns
$\mathrm{~T}_{\text {BBM }}$	Break-Before-Make Time	(See Figure 6)	$1.65-4.5$	2.0			ns
BW	-3 dB Bandwidth	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$1.65-4.5$		1000		MHz

ISOLATION (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$)

O IRR	OFF-Isolation	$\mathrm{f}=240 \mathrm{MHz}$ (See Figure 9)	$1.65-4.5$		-21		dB
$\mathrm{X}_{\text {TALK }}$	Non-Adjacent Channel Crosstalk	$\mathrm{f}=240 \mathrm{MHz}$	$1.65-4.5$		-21		dB

Table 4. AC ELECTRICAL CHARACTERISTICS
CAPACITANCE (Typical: $\mathbf{T}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1.5	pF
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$	1.0	
$\mathrm{Con}^{\text {a }}$	ON Capacitance	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$; OE $=0 \mathrm{~V}, \mathrm{~S}=0 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	7.5	
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{OE}=0 \mathrm{~V}, \mathrm{~S}=0 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$	6.5	
CofF	OFF Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V} ; \mathrm{OE}=0 \mathrm{~V}, \\ & \mathrm{~S}=3.3 \mathrm{~V} \text { or } 0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	3.8	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IS}}=3.3 \mathrm{~V} ; \mathrm{OE}=0 \mathrm{~V}, \\ & \mathrm{~S}=3.3 \mathrm{~V} \text { or } 0 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	2.0	

Figure 4. Propagation Delay Waveforms

$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 5. Propagation Delay Test Circuit

Figure 6. t_{BB} (Time Break-Before-Make)

Figure 8. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\text {OFF }}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{1 S O}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$V_{C T}=U s e V_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω
Figure 9. Off Channel Isolation / On Channel Loss (BW)/Crosstalk (On Channel to Off Channel) / V $\mathrm{V}_{\text {ONL }}$

ORDERING INFORMATION

Device	Package	Shipping †
NLAS3157MX3TCG	ULLGA6 - $1.0 \times 1.0,0.35 P$ (Pb-Free)	$3000 /$ Tape \& Reel
NLAS3257CMX2TCG	XLLGA6 - 1.0 $\times 1.0,0.35 P$ (Pb-Free)	$3000 /$ Tape \& Reel
NLAS3257CMX3TCG		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLAS3157, NLAS3257

PACKAGE DIMENSIONS

ULLGA6 1.0x1.0, 0.35P
CASE 613AD
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED TERMINAL

DIMENSION b APPLIES TO PLATED TERM
AND IS MEASURED BETWEEN 0.15 AND
AND IS MEASURED BETWEEN 0.15
0.30 mm FROM THE TERMINAL TIP.
4. A MAXIMUM OF 0.05 PULL BACK OF THE

PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED.

	MILLIMETERS	
DIM	MIN	MAX
A	---	0.40
A1	0.00	0.05
b	0.12	0.22
D	1.00 BSC	
E	1.00	
BSC		
e	0.35	
BSC		
L	0.25	0.35
L1	0.30	0.40

MOUNTING FOOTPRINT SOLDERMASK DEFINED*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLAS3157, NLAS3257

PACKAGE DIMENSIONS

XLLGA6 1.0x1.0, 0.35P
CASE 713AD
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSION b APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.25 MM FROM THE TERMINAL TIPS.
3. COPLANARITY APPLIES TO ALL OF THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
A	--	0.40	
A1	0.00	0.05	
b	0.17	0.23	
D	1.00	BSC	
E	1.00 BSC		
e	0.35	BSC	
e2	0.60	BSC	
L	0.27	0.33	
L1	0.05	REF	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

