ON Semiconductor

Is Now

# onsemi 

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
## NLAS323

## Dual SPST Analog Switch, Low Voltage, Single Supply

The NLAS323 is a dual SPST (Single Pole, Single Throw) switch, similar to $1 / 2$ a standard 4066 . The device permits the independent selection of 2 analog/digital signals. Available in the US8 package.

The use of advanced 0.6 micron CMOS process, improves the $\mathrm{R}_{\mathrm{ON}}$ resistance considerably compared to older higher voltage technologies.

## Features

- On Resistance is $20 \Omega$ Typical at 5.0 V
- Matching is $<1.0 \Omega$ Between Sections
- 2.0 to 6.0 V Operating Range
- Ultra Low < 5.0 pC Charge Injection
- Ultra Low Leakage < 1.0 nA at $5.0 \mathrm{~V}, 25 \mathrm{C}$
- Wide Bandwidth > $200 \mathrm{MHz},-3.0 \mathrm{~dB}$
- 2000 V ESD (Human Body Model)
- Ron Flatness $\pm 6.0 \Omega$ at 5.0 V
- US8 Package
- Independent, Positive Enable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant


Figure 1. Pinout

## ON Semiconductor ${ }^{\circledR}$


(Note: Microdot may be in either location)

PIN ASSIGNMENT

| 1 | NO1 |
| :--- | :--- |
| 2 | COM1 |
| 3 | IN2 |
| 4 | GND |
| 5 | NO2 |
| 6 | COM2 |
| 7 | IN1 |
| 8 | $\mathrm{~V}_{\mathrm{CC}}$ |

FUNCTION TABLE

| On/Off <br> Enable Input | State of <br> Analog Switch |
| :---: | :---: |
| L | Off |
| H | On |

## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

MAXIMUM RATINGS

| Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC Supply Voltage | -0.5 to +7.0 | V |
| $\mathrm{V}_{1}$ | DC Input Voltage | -0.5 to +7.0 | V |
| $\mathrm{V}_{\mathrm{O}}$ | DC Output Voltage | -0.5 to +7.0 | V |
| IIK | DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND | -50 | mA |
| lok | DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<\mathrm{GND}$ | -50 | mA |
| Io | DC Output Sink Current | $\pm 50$ | mA |
| ICC | DC Supply Current per Supply Pin | $\pm 100$ | mA |
| $\mathrm{I}_{\text {GND }}$ | DC Ground Current per Ground Pin | $\pm 100$ | mA |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature, 1 mm from Case for 10 Seconds | 260 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{J}$ | Junction Temperature under Bias | + 150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\text {JA }}$ | Thermal Resistance (Note 1) | 250 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ | 250 | mW |
| MSL | Moisture Sensitivity | Level 1 |  |
| $\mathrm{F}_{\mathrm{R}}$ | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |  |
| $\mathrm{V}_{\text {ESD }}$ | ESD Withstand Voltage Human Body Model (Note 2) <br> Machine Model (Note 3) <br> Charged Device Model (Note 4) | $\begin{gathered} >2000 \\ >150 \\ \text { N/A } \end{gathered}$ | V |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by- 1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

| Symbol | Characteristics | Min | Max | Unit |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage | 2.0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{IN}}$ | Digital Input Voltage (Enable) | GND | 5.5 | V |
| $\mathrm{~V}_{\mathrm{IO}}$ | Static or Dynamic Voltage Across an Off Switch | GND | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{IS}}$ | Analog Input Voltage (NO, COM) | GND | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range, All Package Types | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Rise or Fall Time, |  |  |  |
|  | (Enable Input) | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | 0 | 100 |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

| Junction <br> Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |



Figure 2. Failure Rate vs. Time Junction Temperature

## NLAS323

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

| Symbol | Parameter | Condition | $\mathrm{V}_{\mathrm{cc}}$ | Guaranteed Max Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ | $<85^{\circ} \mathrm{C}$ | $<125^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High-Level Input Voltage, Enable Inputs |  | $\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$ | $\begin{aligned} & \hline 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$ | $\begin{aligned} & \hline 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$ | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Maximum Low-Level Input Voltage, Enable Inputs |  | $\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | $\begin{aligned} & \hline 0.5 \\ & 0.9 \\ & 1.35 \\ & 1.65 \end{aligned}$ | $\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$ | V |
| $\mathrm{I}_{\mathrm{N}}$ | Maximum Input Leakage Current, Enable Inputs | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND | 0 V to 5.5 V | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Maximum Quiescent Supply Current (per package) | $\begin{aligned} & \text { Enable and VIS = VCC or } \\ & \text { GND } \end{aligned}$ | 5.5 | 1.0 | 1.0 | 2.0 | $\mu \mathrm{A}$ |

DC ELECTRICAL CHARACTERISTICS - Analog Section

| Symbol | Parameter | Condition | $\mathrm{V}_{\text {cc }}$ | Guaranteed Max Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ | $<85^{\circ} \mathrm{C}$ | $<125^{\circ} \mathrm{C}$ |  |
| RON | Maximum On Resistance (Figures 8-12) | $\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{I H} \\ & \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to GND } \\ & \mathrm{I}_{I S} \mathrm{I}=\leq 10.0 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 45 \\ & 30 \\ & 25 \end{aligned}$ | $\begin{aligned} & 50 \\ & 35 \\ & 30 \end{aligned}$ | $\begin{aligned} & 55 \\ & 40 \\ & 35 \end{aligned}$ | $\Omega$ |
| R FLAT (ON) | On Resistance Flatness | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IS}}=\leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$ | 4.5 | 4.0 | 4.0 | 5.0 | $\Omega$ |
| ${ }^{\text {NOO(OFF) }}$ | Off Leakage Current, Pin 2 (Figure 3) | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{NO}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{NO}} 4.5 \mathrm{~V} \end{array}$ | 5.5 | 1.0 | 10 | 100 | nA |
| ICOM(OFF) | Off Leakage Current, Pin 1 (Figure 3) | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$ | 5.5 | 1.0 | 10 | 100 | nA |

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$ )

| Symbol | Parameter | Test Conditions | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | Guaranteed Max Limit |  |  |  |  |  | $<125^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | -55 to $25^{\circ} \mathrm{C}$ |  |  | $<85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
|  |  |  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| ton | Turn-On Time | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ <br> (Figures 4, 5, and 13) | $\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ |  | $\begin{aligned} & 7.0 \\ & 5.0 \\ & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 14 \\ & 10 \\ & 9.0 \\ & 9.0 \end{aligned}$ |  |  | $\begin{aligned} & 16 \\ & 12 \\ & 11 \\ & 11 \end{aligned}$ |  |  | $\begin{aligned} & \hline 16 \\ & 12 \\ & 11 \\ & 11 \end{aligned}$ | ns |
| toff | Turn-Off Time | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ <br> (Figures 4, 5, and 13) | 2.0 3.0 4.5 5.5 |  | 11.0 7.0 5.0 5.0 | 22 14 10 10 |  |  | 24 16 12 12 |  |  | 24 16 12 12 | ns |


|  |  | Typical @ 25, VCC = 5.0 V |  |
| :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Maximum Input Capacitance, Select Input | 8.0 | pF |
| $\mathrm{C}_{\mathrm{NO} \text { or }} \mathrm{C}_{\text {NC }}$ | Analog I/O (switch off) | 10 |  |
| $\mathrm{C}_{\mathrm{COM} \text { (OFF) }}$ | Common I/O (switch off) | 10 |  |
| $\mathrm{C}_{\mathrm{COM} \text { (ON) }}$ | Feedthrough (switch on) | 20 |  |

## NLAS323

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

| Symbol | Parameter | Condition | $\begin{gathered} \hline \mathrm{v}_{\mathrm{cc}} \\ \mathrm{v} \end{gathered}$ | Limit | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $25^{\circ} \mathrm{C}$ |  |
| BW | Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response | $\mathrm{V}_{\mathrm{IS}}=0 \mathrm{dBm}$ <br> $\mathrm{V}_{\text {IS }}$ centered between $\mathrm{V}_{\mathrm{CC}}$ and GND <br> (Figures 6 and 14) | $\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 190 \\ & 200 \\ & 220 \end{aligned}$ | MHz |
| $\mathrm{V}_{\mathrm{ONL}}$ | Maximum Feedthrough On Loss | $\mathrm{V}_{\text {IS }}=0 \mathrm{dBm}$ @ 10 kHz <br> $\mathrm{V}_{\text {IS }}$ centered between $\mathrm{V}_{\mathrm{CC}}$ and GND <br> (Figure 6) | $\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$ | dB |
| $\mathrm{V}_{\text {ISO }}$ | Off-Channel Isolation | $\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1.0 \mathrm{VRMS}$ <br> $\mathrm{V}_{\text {IS }}$ centered between $\mathrm{V}_{\mathrm{CC}}$ and GND <br> (Figures 6 and 15) | $\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$ | -93 | dB |
| Q | Charge Injection Enable Input to Common I/O | $\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \mathrm{~F}_{I S}=20 \mathrm{kHz} \\ & \mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns} \\ & \mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}^{2}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }} \\ & \text { (Figures } 6 \text { and 16) } \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$ | pC |
| THD | Total Harmonic Distortion THD + Noise | $\begin{array}{r} \mathrm{F}_{\mathrm{IS}}=20 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IS}}=3.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ \mathrm{V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{array}$ <br> (Figure 17) | $\begin{aligned} & 3.3 \\ & 5.5 \end{aligned}$ | $\begin{gathered} \hline 0.3 \\ 0.15 \end{gathered}$ | \% |



Figure 3. Switch Leakage vs. Temperature

## NLAS323



Figure 4. $\mathrm{t}_{\mathrm{N}} / \mathrm{t}_{\mathrm{ofF}}$


Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

## NLAS323



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for $\mathrm{V}_{\mathrm{IN}}$ at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3.0 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$


Figure 7. Charge Injection: (Q)


Figure 8. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\mathrm{COM}}$ and $\mathrm{V}_{\mathrm{CC}}\left(@ 25^{\circ} \mathrm{C}\right)$


Figure 10. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\text {com }}$ and Temperature, $V_{C C}=2.5 \mathrm{~V}$


Figure 12. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $V_{C C}=4.5 \mathrm{~V}$


Figure 9. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $V_{c c}=2.0 \mathrm{~V}$


Figure 11. $\mathrm{R}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $V_{C C}=3.0 \mathrm{~V}$


Figure 13. Switching Time vs. Supply Voltage, $\mathrm{T}=25^{\circ} \mathrm{C}$

## NLAS323



Figure 14. ON Channel Bandwidth and Phase Shift Over Frequency


Figure 15. Off Channel Isolation


Figure 16. Charge Injection vs. $\mathbf{V}_{\text {com }}$


Figure 17. THD vs. Frequency

DEVICE ORDERING INFORMATION

| Device <br> Order Number | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: |
| NLAS323USG | US8 |  |
|  | (Pb-Free) | $3000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## PACKAGE DIMENSIONS

US8
US SUFFIX
CASE 493-02
ISSUE D


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILIMETERS
3. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSION OR GATE BURR. MOLD FLASH. PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.14MM ( $0.0055^{\prime \prime}$ ) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14 MM (0.0055") PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0.0203MM (0.003-0.008").
6. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED $\pm 0.0508$ MM ( $0.0002^{\prime \prime}$ ).

| DIM | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 1.90 | 2.10 | 0.075 | 0.083 |
| B | 2.20 | 2.40 | 0.087 | 0.094 |
| C | 0.60 | 0.90 | 0.024 | 0.035 |
| D | 0.17 | 0.25 | 0.007 | 0.010 |
| F | 0.20 | 0.35 | 0.008 | 0.014 |
| G | 0.50 BSC |  | 0.020 BSC |  |
| H | 0.40 REF |  | 0.016 REF |  |
| J | 0.10 | 0.18 | 0.004 | 0.007 |
| K | 0.00 | 0.10 | 0.000 | 0.004 |
| L | 3.00 | 3.20 | 0.118 | 0.128 |
| M | $0^{\circ}$ | $6^{\circ}$ | $0^{\circ}$ | $6^{\circ}$ |
| N | $0^{\circ}$ | $10^{\circ}$ | $0^{\circ}$ | $10^{\circ}$ |
| P | 0.23 | 0.34 | 0.010 | 0.013 |
| R | 0.23 | 0.33 | 0.009 | 0.013 |
| S | 0.37 | 0.47 | 0.015 | 0.019 |
| U | 0.60 | 0.80 | 0.024 | 0.031 |
| V | 0.12 BSC |  | 0.005 BSC |  |

DETAIL E
RECOMMENDED
SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ


[^0]:    
    
    
    
    
    
    
    
    
    
    
    
     Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

