NLAS3899B

Dual DPDT Low Ron, Low Capacitance Switch

The NLAS3899B is a dual DPDT analog switch designed for low power audio and dual SIM card applications. The low R_{ON} of 3.0Ω (typical) is ideal for routing audio signals to or from a moderately high impedance load. In addition, the low C_{ON} of 20 pF (typical) gives the NLAS3899B a high bandwidth of 280 MHz , perfect for dual SIM card applications.

Features

- Single Supply Operation
1.65 to $4.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$

Function Directly from Li-Ion Battery

- Low ON Resistance (3.0 Ω Typical Across V_{CC})
- Low Con (20 pF Typical)
- Bandwidth 280 MHz
- Maximum Breakdown Voltage: 5.5 V
- Low Static Power
- Interfaces with 1.8 V Chipset
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Dual SIM Card Data Switching
- Four Unbalanced (Single-Ended) Switches

Important Information

- ESD Protection:

Human Body Model (HBM) 1000 V - All Pins $5000 \mathrm{~V}-\mathrm{I} / \mathrm{O}$ to GND

- Continuous Current Rating Through each Switch $\pm 300 \mathrm{~mA}$
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Package:
- $1.8 \times 2.6 \times 0.75 \mathrm{~mm}$ WQFN16 Pb-Free
- $3.0 \times 3.0 \times 0.9 \mathrm{~mm}$ QFN16 Pb-Free

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

XX	$=$ Specific Device Code
A	$=$ Assembly Location
M	$=$ Date Code/Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

NLAS3899B

Figure 1. Input Equivalent Circuit

PIN DESCRIPTION

QFN PIN \#	Symbol	Name and Function
$1,3,5,7,9,11,13,15$	NO A-D, NC A-D	Independent Channels
2,10	A-B IN, C-D IN	Controls
$4,8,12,16$	COM A-D	Common Channels
6	GND	Ground (V)
14	VCC	Positive Supply Voltage

TRUTH TABLE

IN	NO	NC
H	ON	OFF*
L	OFF*	ON

*High impedance.

OPERATING CONDITIONS

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Condition	Unit
V_{CC}	V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5		V
$\mathrm{~V}_{\mathrm{IS}}$	NOX, NCX, or COMx	Analog Signal Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$		V
$\mathrm{~V}_{\mathrm{IN}}$	A-B IN, C-D IN	Control Input Voltage	-0.5 to 5.5		V
$\mathrm{I}_{\mathrm{IS} \text { _CON }}$	NOx, NCX, or COMx	Analog Signal Continuous Current	± 300	Closed Switch	mA
$\mathrm{I}_{\text {IS_PK }}$	NOx, NCx, or COMx	Analog Signal Peak Current	± 500	10% Duty Cycle	mA
I_{IN}	A-B IN, C-D IN	Control Input Current	± 20		mA
$\mathrm{~T}_{\text {STG }}$		Storage Temperature Range	-65 to 150		${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Value	Condition	Unit
V_{CC}	V_{CC}	Positive DC Supply Voltage	1.65 to 4.3		V
$\mathrm{~V}_{\mathrm{IS}}$	NOx, NCx, or COMx	Analog Signal Voltage	GND to V_{CC}		V
V_{IN}	A-B IN, C-D IN	Control Input Voltage	GND to 4.3		V
$\mathrm{~T}_{\mathrm{A}}$		Operating Temperature Range	-40 to +85		${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		Input Rise or Fall Time	20	$\mathrm{~V}_{\mathrm{CC}}=1.6 \mathrm{~V}-2.7 \mathrm{~V}$	$\mathrm{~ns} / \mathrm{V}$
			10	$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}-4.5 \mathrm{~V}$	

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for each section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

ESD PROTECTION

Pins	Description	Minimum Voltage
All Pins	Human Body Model	1 kV
I/O to GND	Human Body Model	5 kV

NLAS3899B

DC Electrical Characteristics

Typical: $\mathrm{T}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

CONTROL INPUT (Typical: $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$V_{c c}$ (V)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
V_{IH}	$\begin{aligned} & \hline \text { A-B IN, } \\ & \text { C-D IN } \end{aligned}$	Control Input High		$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$			V
VIL	$\begin{aligned} & \text { A-B IN, } \\ & \text { C-D IN } \end{aligned}$	Control Input Low		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	V
IN	$\begin{aligned} & \hline \text { A-B IN, } \\ & \text { C-D IN } \end{aligned}$	Control Input Leakage	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	4.3		± 0.1	± 1.0	$\mu \mathrm{A}$

SUPPLY CURRENT AND LEAKAGE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$V_{c c}$ (V)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
${ }^{I_{\mathrm{NO}} / \mathrm{NC}}$ (OFF)	NCx, NOx	OFF State Leakage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $\mathrm{V}_{\mathrm{NC} / \mathrm{NO}}=0.3 \mathrm{~V}$ $\mathrm{V}_{\mathrm{COM}}=4.0 \mathrm{~V}$	4.3		± 10	± 300	nA
$\begin{aligned} & I_{\mathrm{COM}} \\ & \text { (ON) } \end{aligned}$	COMx	ON State Leakage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $\mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}$ or 4.0 V with V_{NO} floating $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$ or 4.0 V	4.3		± 10	± 300	nA
Icc	V_{CC}	Quiescent Supply	$\begin{aligned} & V_{I N} \text { and } V_{I S}=V_{C C} \text { or } G N D \\ & I_{D}=0 \mathrm{~A} \end{aligned}$	1.65-4.3		± 1.0	± 2.0	$\mu \mathrm{A}$
IofF	$\begin{aligned} & \text { A-B IN, } \\ & \text { C-D IN } \end{aligned}$	Power Off Leakage	$\mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}$ or GND	0		± 0.5	± 2.0	$\mu \mathrm{A}$

ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\begin{aligned} & V_{C C} \\ & \text { (V) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
Ron	$\begin{aligned} & \text { NOx, NCx } \\ & \text { COMx } \end{aligned}$	ON Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=-100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 3.6 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.6 \\ & 2.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & 3.0 \\ & 2.5 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \text { NOX, NCx } \\ & \text { COMx } \end{aligned}$	RON Flatness	$\begin{aligned} & \mathrm{ION}_{\mathrm{ON}}=-100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.1 \end{aligned}$		Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \text { NOx, NCx } \\ & \text { COMx } \end{aligned}$	RON Matching	$\begin{aligned} & \mathrm{ION}_{\mathrm{ON}}=-100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$		Ω

NLAS3899B

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
t_{ON}	$\begin{gathered} \text { IN to } \\ \text { NCx or NOx } \end{gathered}$	Turn On Time		2.3-4.3		30	40	ns
$\mathrm{t}_{\text {OFF }}$	$\begin{gathered} \text { IN to } \\ \text { NCx or NOx } \end{gathered}$	Turn Off Time		2.3-4.53		20	30	ns
$\mathrm{t}_{\text {BBM }}$	$\begin{gathered} \text { IN to } \\ \text { NCx or NOx } \end{gathered}$	Break Before Make		3.0	2	15		ns
BW		-3dB Bandwidth	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65-4.3		280		MHz

ISOLATION AND THD (Typical: $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
Q		Charge Injection	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\text {IS }}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}}-\Delta \mathrm{V}_{\text {OUT }} \end{aligned}$	1.65-4.3		111		pC
THD		Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}_{\mathrm{IS}}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{gen}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IS}}=1.0 \mathrm{~V} \end{aligned}$	3.0		0.007		\%
$\mathrm{V}_{\text {ONL }}$		Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ @ 100 kHz to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} \& $G N D$	1.65-4.3		-0.06		dB
OIRR	NOx	Off Isolation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}(\mathrm{pk}-\mathrm{pk})=1.0 \mathrm{~V} \end{aligned}$	1.65-4.3		-67		dB
Xtalk	COMx to COMy	Non-Adjacent Channel	V_{NO} or $\mathrm{V}_{\mathrm{NC}}(\mathrm{pk}-\mathrm{pk})=1.0 \mathrm{~V}$	1.65-4.3		-100		dB

CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
C_{IN}	$\begin{gathered} \mathrm{A}-\mathrm{B} \operatorname{IN}, \mathrm{C}-\mathrm{D} \\ \mathrm{IN} \end{gathered}$	Control Input		0 V		5.0		pF
Con	NCx to COMx	Through Switch	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	3.0 V		20		pF
$\mathrm{C}_{\text {OFF }}$	$\begin{aligned} & \hline \mathrm{NCx} \\ & \mathrm{NOX} \end{aligned}$	Unselected Port	$\mathrm{V}_{\text {IS }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.0 \mathrm{~V}$	3.0 V		10		pF

NLAS3899B

Figure 2. I_{cc} vs. $\mathrm{V}_{\text {in }}$

Figure 3. (Expanded View) Icc vs. $\mathrm{V}_{\text {in }}$

Figure 4. $\mathrm{t}_{\text {BBM }}$ (Time Break-Before-Make)

Figure 5. ton/toff
Input
 \checkmark

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right) \quad$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Output

Figure 8. Charge Injection: (Q)

NLAS3899B

DEVICE ORDERING INFORMATION

Device Order Number	Package Type	Tape \& Reel Size †
NLAS3899BMNTBG	WQFN16 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS3899BMNTWG	QFN16 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS3899BMNTXG	QFN16 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN16 3x3, 0.5P
CASE 485AE
ISSUE C
DATE 24 JUN 2016

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS,
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED COPLANARITY APPLIES TO TIE EX
5. PAD AS WELL AS THE TERMINALS. MO-220, VARIATION VEED-6.

	MILLIMETERS	
DIM	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20	
bEF		
b	0.18	0.30
D	3.00	$0.3 S C$
D2	1.25	1.55
E	3.00	
BSC		
E2	1.25	1.55
e	0.50	1.5
K	0.20	---
L	0.30	0.50
L1	0.00	0.15

GENERIC
MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW•
\cdot

A = Assembly Location
L = Wafer Lot
$Y=$ Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON14949D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any a
rights of others.

WQFN16, $1.8 \times 2.6,0.4 P$
CASE 488AP-01
ISSUE B
DATE 25 JUN 2008

| DOCUMENT NUMBER: | 98AON20790D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WQFN16, 1.8 X 2.6,0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

