NLAS4783B

Triple SPDT 1.0Ω RON Switch

The NLAS4783B is a triple independent low R_{ON} SPDT analog switch with ENABLE. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS4783B can handle a balanced microphone/speaker/ring-tone generator in a monophone mode. The device contains a break-before-make feature.

Features

- Single Supply Operation
1.65 to $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$

Function Directly from LiON Battery

- Tiny $3 \times 3 \mathrm{~mm} 16-$ Pin QFN Package

Meets JEDEC MO-220 Specifications

- Low Static Power
- OVT on Logic Address and Enable Inputs
- This is a $\mathrm{Pb}-$ Free Device*

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Three Unbalanced (Single-Ended) Switches
- Stereo Balanced (Push-Pull) Switching

Important Information

- ESD Protection:

Human Body Model $(\mathrm{HBM})>8000 \mathrm{~V}$
Machine Model (MM) > 400 V

- Ringtone-Chip/Amplifier Switching
- Continuous Current Rating Through each Switch $\pm 300 \mathrm{~mA}$
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Pin-for-Pin Compatible with MAX4783

[^0]

NLAS4783B

Figure 1. Input Equivalent Circuit

PIN FUNCTION DESCRIPTION

QFN PIN \#	Symbol	Description
15	Y 1	Analog Switch Y Normally Open Input
16	$\mathrm{Y0}$	Analog Switch Y Normally Closed Input
1	Z 1	Analog Switch Z Normally Open Input
2	Z	Analog Switch Z Output
3	Z0	Analog Switch Z Normally Closed Input
4	ENABLE	Digital Enable Input. Normally connect to GND. Drive to logic high to set all switches off.
5	NC	No Connection. Not internally connected.
6	GND	Ground
7	C	Digital Address C Input
8	B	Digital Address B Input
9	A	Digital Address A Input
10	X0	Analog Switch X Normally Closed Input
11	X1	Analog Switch X Normally Open Input
12	X	Analog Switch X Output
13	Y	Analog Switch Y Output
14	VCC	Positive Analog and Digital Supply Voltage Input

NLAS4783B

TRUTH TABLE/SWITCH PROGRAMMING

Enable Input	Select Input			All Switches Open
	C	B	A	
H	X	X	X	
L	L	L	L	$\begin{aligned} & \mathrm{X}-\mathrm{XO} \\ & \mathrm{Y}-\mathrm{YO} \\ & \mathrm{Z}-\mathrm{ZO} \end{aligned}$
L	L	L	H	$\begin{aligned} & \mathrm{X}-\mathrm{X1} \\ & \mathrm{Y}-\mathrm{YO} \\ & \mathrm{Z}-\mathrm{ZO} \end{aligned}$
L	L	H	L	$\begin{aligned} & \mathrm{X}-\mathrm{X0} \\ & \mathrm{Y}-\mathrm{Y} 1 \\ & \mathrm{Z}-\mathrm{Z0} \end{aligned}$
L	L	H	H	$\begin{aligned} & \mathrm{X}-\mathrm{X1} \\ & \mathrm{Y}-\mathrm{Y} 1 \\ & \mathrm{Z}-\mathrm{Z0} \end{aligned}$
L	H	L	L	$\begin{aligned} & \mathrm{X}-\mathrm{X0} \\ & \mathrm{Y}-\mathrm{Y0} \\ & \mathrm{Z}-\mathrm{Z1} \end{aligned}$
L	H	L	H	$\begin{aligned} & \mathrm{X}-\mathrm{X1} \\ & \mathrm{Y}-\mathrm{Y0} \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$
L	H	H	L	$\begin{aligned} & \mathrm{X}-\mathrm{X0} \\ & \mathrm{Y}-\mathrm{Y} 1 \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$
L	H	H	H	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1 \\ & \mathrm{Y}-\mathrm{Y} 1 \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$

1. Input and output pins are identical and interchangeable. Both pins can be considered input or output. Bidirectional signal pass.

NLAS4783B

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage $\left(\mathrm{V}_{\text {NO }}, \mathrm{V}_{\text {NC }}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	-0.5 to V_{CC}	V
V_{IN}	Digital Select Input Voltage	-0.5 to +5.5	V
$\mathrm{I}_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 300	mA
$\mathrm{I}_{\text {anl-pk } 1}$	Peak Current from COM to NC/NO, 10 Duty Cycles (Note 2)	± 500	mA
$\mathrm{I}_{\mathrm{clmp}}$	Continuous DC Current into COM/NC/NO with Respect to V_{CC} or GND	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
2. Defined as 10% ON, 90% off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	4.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage ($\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	-	V_{CC}	V
V_{IN}	Digital Select Input Voltage	-	V_{CC}	V
T_{A}	Operating Temperature Range	-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	$\mathrm{V}_{\mathrm{CC}}=1.6-2.7 \mathrm{~V}$	-	20
		$\mathrm{~V}_{\mathrm{CC}}=3.0-4.5 \mathrm{~V}$	-	10

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit		Unit
				$-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85{ }^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		1.65	1.0	1.0	V
			2.7	1.4	1.4	
			3.6	1.8	1.8	
			4.3	2.2	2.2	
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Select Inputs		1.65	0.4	0.4	V
			2.7	0.5	0.5	
			3.6	0.6	0.6	
			4.3	0.8	0.8	
1 IN	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ or GND	4.3	± 0.1	± 1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ or GND	0	± 0.5	± 2.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (Note 3)	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	1.65 to 4.5	± 1.0	± 2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	V_{cc}	Guaranteed Maximum Limit				Unit
				$-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		$<85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
R_{ON}	NC/NO On-Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 100 \mathrm{~mA} \end{aligned}$	2.7-4.3		1.0		1.2	Ω
$\mathrm{R}_{\text {FLAT }}$	NC/NO On-Resistance Flatness (Notes 3, 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	2.7-4.3		0.2		0.2	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 3 and 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0.5 \mathrm{~V} \mathrm{CC} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	2.7-4.3		0.4		0.6	Ω
$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$ $\mathrm{I}_{\mathrm{NO} \text { (OFF) }}$	NC or NO Off Leakage Current (Note 3)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} \end{aligned}$	4.3	-10	10	-100	100	nA
I'Com(ON)	COM ON Leakage Current (Note 3)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ $\mathrm{V}_{\mathrm{NO}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NO} floating $\mathrm{V}_{\text {COM }}=0.3 \mathrm{~V}$ or 4.0 V	4.3	-10	10	-100	100	nA

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$ between NC1 and NC2 or between NO1 and NO2.
5. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{V}_{\text {IS }}$ (V)	Guaranteed Maximum Limit					Unit
					$-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			25		27	ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			15		20	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{I S}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$	3.0	1.5	2.0	8.0				ns

Typical @ 25, $\mathbf{V}_{\mathbf{C C}}=\mathbf{4 . 5} \mathbf{V}$			
C_{IN}	Control Pin Input Capacitance	5.0	pF
C_{SN}	SN Port Capacitance	75	pF
C_{D}	D Port Capacitance When Switch is Enabled	240	pF

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$25^{\circ} \mathrm{C}$	Unit
				Typical	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	17	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-through On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-0.10	dB
$\mathrm{V}_{\text {ISO }}$	Off-Channel Isolation	$\begin{aligned} & \hline f=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS} ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{IN}} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and } \operatorname{GND} \text { (Figure 5) (Note 6) } \end{aligned}$	1.65-4.5	-62	dB
Q	Charge Injection Select Input to Common I/O	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC} \text { to }} \mathrm{GND}, \mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\text {OUT }} \text { (Figure 6) } \end{aligned}$	1.65-4.5	50	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=2 \mathrm{VRMS} \end{aligned}$	4.5	0.008	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V} \text { RMS, } \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-62	dB

6. Off-Channel Isolation = $20 \log 10(\mathrm{Vcom} / \mathrm{Vno}), \mathrm{Vcom}=$ output, $\mathrm{Vno}=$ input to off switch.

Figure 2. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Output

Figure 6. Charge Injection: (Q)

NLAS4783B

Figure 7. On-Resistance vs. Input Voltage
@ $\mathrm{V}_{\mathrm{Cc}}=4.3 \mathrm{~V}$

Figure 9. R ON $^{\text {vs. }} \mathrm{V}_{\text {IN }}$ vs. Temperature $@ V_{C C}=3.6 \mathrm{~V}$

Figure 8. R $\mathrm{RON}^{\mathrm{ON}}$ vs. $\mathrm{V}_{\text {IN }}$ vs. Temperature $@ V_{c c}=3.0 \mathrm{~V}$

Figure 10. Total Harmonic Distortion vs. Frequency

ORDERING INFORMATION

	Device Nomenclature					Package Type	Tape \& Reel Size ${ }^{\dagger}$
Device Order Number	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NLAS4783BMN1R2G	NL	AS	4783B	MN1	R2G	QFN (Pb-Free)	3000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN16 3x3, 0.5P
CASE 485AE
ISSUE C
DATE 24 JUN 2016

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS,
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED COPLANARITY APPLIES TO TIE EX
5. PAD AS WELL AS THE TERMINALS. MO-220, VARIATION VEED-6.

	MILLIMETERS	
DIM	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20	
bEF		
b	0.18	0.30
D	3.00	$0.3 S C$
D2	1.25	1.55
E	3.00	
BSC		
E2	1.25	1.55
e	0.50	1.5
K	0.20	---
L	0.30	0.50
L1	0.00	0.15

GENERIC
MARKING DIAGRAM*

${ }^{\circ}$ XXXXX
XXXXX
ALYW•
\cdot

A = Assembly Location
L = Wafer Lot
$Y=$ Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON14949D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16 3X3, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any a
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

