NLAS5123

SPDT, $1 \mathbf{\Omega}$ Ron Switch

The NLAS5123 is a low $\mathrm{R}_{\text {ON }}$ SPDT analog switch. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS5123 can handle a balanced microphone/ speaker/ringtone generator in a monophone mode. The device contains a break-before-make (BBM) feature.

Features

- Single Supply Operation:

$$
1.65 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}
$$

- Function Directly from LiON Battery
- R_{ON} Typical $=1.0 \Omega @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Low Static Power
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Stereo Balanced (Push-Pull) Switching

Important Information

- Continuous Current Rating Through each Switch $\pm 300 \mathrm{~mA}$
- $1.2 \times 1.0 \times 0.4 \mathrm{P}$ mm 6-Lead Thin DFN Package

PIN ASSIGNMENTS

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Figure 1. Input Equivalent Circuit

PIN DESCRIPTION

Pin Name	Description
NC, NO, COM	Data Ports
IN	Control Input

TRUTH TABLE

Control Input	Function
L	NC Connected to COM
H	NO Connected to COM

H = HIGH Logic Level.
L = LOW Logic Level.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage $\left(\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	-0.5 to +6.0	V
$\mathrm{I}_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 300	mA
$\mathrm{I}_{\text {anl-pk1 }}$	Peak Current from COM to NC/NO, 10 Duty Cycles (Note 1$)$	± 500	mA
$\mathrm{I}_{\mathrm{clmp}}$	Continuous DC Current into COM/NC/NO with respect to V_{CC} or GND	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as $10 \% \mathrm{ON}, 90 \%$ off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Rating	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (NC, NO, COM)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IN}	Digital Select Input Voltage (IN)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range		-40	85
${ }^{\circ} \mathrm{C}$				
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		20
		$\mathrm{~V}=5.5 \mathrm{~V}$		10

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.4 \end{aligned}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		$\begin{aligned} & \hline 2.7 \\ & 4.5 \end{aligned}$					$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	V
I_{N}	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	0-5.5			± 0.1		± 1	$\mu \mathrm{A}$
IofF	OFF State Leakage Current (Note 7)	$0 \leq \mathrm{NO}, \mathrm{NC}, \mathrm{COM} \leq \mathrm{V}_{\mathrm{CC}}$	5.5	-2.0		+2.0		± 20	nA
I ON	ON State Leakage Current (Note 7)	$0 \leq \mathrm{NO}, \mathrm{NC}, \mathrm{COM} \leq \mathrm{V}_{\mathrm{CC}}$	5.5	-4.0		+4.0		± 40	nA
$\mathrm{R}_{\text {ON }}$	Switch On Resistance (Note 2)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	2.7			1.7		2.0	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	4.5			1.0		1.2	
${ }^{\text {ICC }}$	Quiescent Supply Current All Channels ON or OFF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$	5.5			0.5		1.0	$\mu \mathrm{A}$

Analog Signal Range

| ΔR_{ON} | On Resistance Match
 Between Channels
 (Notes 2, 3, 4) | $\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}$,
 $\mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}$
 $\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}$,
 $\mathrm{V}_{\mathrm{IS}}=2.5 \mathrm{~V}$ | 2.7 | 0.15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |

2. Measured by the voltage drop between NC/NO and COM pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (NO, NC, COM).
3. Parameter is characterized but not tested in production.
4. $\Delta R_{O N}=R_{O N} \max -R_{O N}$ min measured at identical V_{CC}, temperature and voltage levels.
5. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
6. Guaranteed by Design.
7. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit	Figure \#
				Min	Typ	Max	Min	Max		
$\begin{array}{\|l\|l} \hline \mathrm{t}_{\mathrm{PHL}} \\ \mathrm{t}_{\mathrm{PLH}} \end{array}$	Propagation Delay Bus-to-Bus (Note 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 0.3 \end{aligned}$			ns	
ton	Output Enable Time Turn On Time (COM to NO or NC)	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns	3, 4
tofF	Output Disable Time Turn Off Time (COM to NO, NC)	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns	3, 4
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time (Note 8)	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		ns	2
Q	Charge Injection (Note 8)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 26 \\ & 48 \end{aligned}$				pC	6
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 10)	$\begin{aligned} & R_{L}=50 \Omega \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline 2.7- \\ 5.5 \end{gathered}$		-62				dB	5
$\mathrm{X}_{\text {talk }}$	Crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline 2.7- \\ 5.5 \end{gathered}$		-70				dB	7
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		55				MHz	8
THD	Total Harmonic Distortion (Note 8)	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & 0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		0.012				\%	9

8. Guaranteed by Design.
9. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
10. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}, \mathrm{NCC}}\right]$.

CAPACITANCE (Note 11)

Symbol	Parameter	Test Conditions	Typ	Max	Unit
C_{IN}	Select Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	2.0		pF
$\mathrm{C}_{\mathrm{NC} / \mathrm{NO}}$	NC, NO Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	20		pF
$\mathrm{C}_{\mathrm{COM}}$	COM Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	55		pF

11. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

Figure 2. t_{BB} (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Output

Figure 6. Charge Injection: (Q)

Figure 7. Cross Talk vs. Frequency @ $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$

Figure 9. Total Harmonic Distortion

Figure 8. Bandwidth vs. Frequency

Figure 10. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$

Figure 11. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$

Figure 12. On-Resistance vs. Input Voltage

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature					Package Type	Tape \& Reel Size ${ }^{\dagger}$
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NLAS5123MNR2G	NL	AS	5123	MN	2	WDFN6 ($\mathrm{Pb}-\mathrm{Free}$)	3000 / Tape \& Reel
NLAS5123MUR2G	NL	AS	5123	MU	2	UDFN6 (Pb-Free)	3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON21223D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLEED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WDFN6, 1.2 X1.0, 0.4 P | PAGE 1 OF 1 |

[^0]
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON22068D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 6 PIN UDFN, 1.2X1.0, 0.4P | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]: ON Semiconductor and (IN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

