NLAS52231

Analog Switch, Dual SPDT, Ultra-Low Ron, 0.4Ω

The NLAS52231 is a dual SPDT analog switch with overshoot protection on the signal lines. It is ideally suited for audio applications that require very low R_{ON} values for maximum signal transfer. The overshoot protection included in the NLAS52231 allows analog signals on the COM, NO or NC lines to swing safely above V_{CC} without incurring significant leakage. This feature provides added protection against undesirable leakage or damage to the device in the event that an incoming audio signal spikes above its nominal level.

The NLAS52231 features a wide V_{CC} operating range, 1.65 $\mathrm{V}-4.5 \mathrm{~V}$. It is capable of interfacing with control input select line voltages, V_{IN}, as low as 1.3 V for a V_{CC} of 3.0 V . The NLAS52231 is offered in a very small $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm} 10-$ pin UQFN package.

Features

- Ultra-Low $\mathrm{R}_{\mathrm{ON}}: 0.4 \Omega$ at $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
- Overshoot Protection: $\mathrm{V}_{\text {IS }}$ can safely rise up to 1.1 V above V_{CC}
- $V_{\text {CC }}$ Range: 1.65 V to 4.5 V
- $1.4 \times 1.8 \times 0.55 \mathrm{~mm}$ UQFN10
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Mobile Phones
- Portable Devices

Figure 1. Applications Diagram

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
MARKING
DIAGRAM

S2 = Specific Device Code
M = Date Code/Assembly Location

- = Pb-Free Device
(Note: Microdot may be in either location)

FUNCTION TABLE

IN 1, 2	NO 1, $\mathbf{2}$	NC 1,2
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

PIN DESCRIPTION

QFN PIN \#	Symbol	Name and Function
$2,5,7,10$	NC1 to NC2, NO1 to NO2	Independent Channels
4,8	IN1 and IN2	Controls
3,9	COM1 and COM2	Common Channels
6	GND	Ground (V)
1	VCC 2	Positive Supply Voltage

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage $\left(\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+1.6$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	-0.5 to +5.5	V
$\mathrm{I}_{\mathrm{an} 11}$	Continuous DC Current from COM to NC/NO	± 300	mA
$\mathrm{I}_{\mathrm{anl} / \mathrm{pk} 1}$	Peak Current from COM to NC/NO, 10 Duty Cycle (Note 1)	± 500	mA
$\mathrm{I}_{\mathrm{clmp}}$	Continuous DC Current into COM/NO/NC with Respect to V_{CC} or GND	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as 10% ON, 90% OFF Duty Cycle.

RECOMMENDED OPERATING CONDITIONS

ESD PROTECTION

Symbol	Parameter	Value	Unit
ESD	Human Body Model (HBM)	3.0	kV
ESD	Machine Model (MM)	100	V

NLAS52231 DC CHARACTERISTICS - DIGITAL SECTION (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\mathrm{V}_{\text {cc }}$	Guaranteed Limit		Unit
				$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$	V
VIL	Maximum Low-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	V
In	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ or GND	4.3	± 0.1	± 1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ or GND	0	± 0.5	± 2.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (Note 2)	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	1.65 to 4.5	± 1.0	± 2.0	$\mu \mathrm{A}$

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS52231 DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

Symbol	Parameter	Condition	V cc	Guaranteed Maximum Limit				Unit
				$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
RON (NC)	NC "ON" Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{I}} \mathrm{I} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & \hline 0.46 \\ & 0.43 \end{aligned}$		$\begin{aligned} & \hline 0.56 \\ & 0.53 \end{aligned}$	Ω
RON (NO)	NO "ON" Resistance (Note 3)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{IN}} \mathrm{I} \leq 100 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.38 \\ & 0.35 \end{aligned}$		$\begin{aligned} & 0.48 \\ & 0.43 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}(\mathrm{NC})$	NC_On-Resistance Flatness (Notes 3, 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \hline 0.17 \\ & 0.18 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}(\mathrm{NO})$	NO_On-Resistance Flatness (Notes 3, 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.12 \\ & 0.14 \end{aligned}$		$\begin{aligned} & \hline 0.14 \\ & 0.16 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 3 and 5)	$\begin{aligned} & \hline \mathrm{V}_{\text {IS }}=1.5 \mathrm{~V} ; \\ & I_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=2.2 \mathrm{~V} ; \\ & I_{\text {COM }}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	Ω
$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC or NO Off Leakage Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO} \text { or }} \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} \end{aligned}$	4.3	-10	10	-100	100	nA
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current (Note 3)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NO} floating $\mathrm{V}_{\text {COM }}=0.3 \mathrm{~V}$ or 4.0 V	4.3	-10	10	-100	100	nA

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4. Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$ between NC1 and NC2 or between NO1 and NO2.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\begin{aligned} & V_{\text {IS }} \\ & (V) \end{aligned}$	Guaranteed Maximum Limit					Unit
					$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	
t_{ON}	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			50		60	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			30		40	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IS}}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$	3.0	1.5	2	15				ns

		Typical @ 25, $\mathbf{V}_{\mathbf{c C}}=\mathbf{3 . 6} \mathbf{~ V}$	
C_{IN}	Control Pin Input Capacitance	3.5	pF
$\mathrm{C}_{\mathrm{NO} / \mathrm{NC}}$	NO, NC Port Capacitance	39	pF
$\mathrm{C}_{\mathrm{COM}}$	COM Port Capacitance When Switch is Enabled	85	pF

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	V_{cc}(V)	$25^{\circ} \mathrm{C}$	Unit
				Typical	
BW	Maximum On-Channel -3 dB Bandwidth or Minimum Frequency Response	V_{IN} centered between V_{CC} and GND (Figure 5)	1.65-4.5	36	MHz
$\mathrm{V}_{\mathrm{ONL}}$	Maximum Feed-through On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ @ 100 kHz to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-0.06	dB
V ISO	Off-Channel Isolation	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS} ; \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ V_{IN} centered between V_{CC} and $G N D$ (Figure 5)	1.65-4.5	-62	dB
Q	Charge Injection Select Input to Common I/O	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC} \text { to }}$ GND, $\mathrm{R}_{I S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ $Q=C_{L} \times D V_{\text {OUT }}$ (Figure 6)	1.65-4.5	53	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{gen}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=2.0 \mathrm{VRMS} \end{aligned}$	3.0	0.03	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1.0 \mathrm{~V} \text { RMS, } \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-88	dB

6. Off-Channel Isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Figure 2. $\mathrm{t}_{\text {BBM }}$ (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAS52231

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Figure 6. Charge Injection: (Q)

Figure 7. Cross Talk vs. Frequency @ $V_{c c}=4.3 \mathrm{~V}$

Figure 9. Total Harmonic Distortion

Figure 11. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{cc}}=4.3 \mathrm{~V}$

FREQUENCY (MHz)
Figure 8. Bandwidth vs. Frequency

Figure 10. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$

Figure 12. On-Resistance vs. Input Voltage

Overshoot Protection

The NLAS52231 features overshoot protection on the signal lines. This allows input signals to exceed the V_{CC} voltage of the switch up to 1.1 V . This is useful in applications where the input signal has a wide dynamic range and may at times exceed the typical signal swing. It is
also helpful in designs that pair a moderate signal swing range with a fairly low operating voltage. Up to 1.1 V above V_{CC}, the NLAS52231 switch will pass signals without distortion and maintain all specified performance characteristics.

Figure 13.

ORDERING INFORMATION

Device	Package	Shipping †
NLAS52231MUR2G	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel

[^0]SCALE 5:1

DETAIL A Bottom View (Optional)

BOTTOM VIEW

MOUNTING FOOTPRINT

NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
FROM TERMINAL. FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40	
BSC		
E	1.80	
BSC		
e	0.40	
L	0.30	
L1	0.00	0.50
L3	0.40	0.15

GENERIC MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22493D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN UQFN, 1.4 X 1.8, 0.4P | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

[^1]: ON Semiconductor and (IN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

