NLAS7222B, NLAS7222C

High-Speed USB 2.0 (480 Mbps) DPDT Switches

ON Semiconductor's NLAS7222B and NLAS7222C are part of a series of analog switch circuits that are produced using the company's advanced sub-micron CMOS technology, achieving industry-leading performance.

Both the NLAS7222B and NLAS7222C are 2- to 1-port analog switches. Their wide bandwidth and low bit-to-bit skew allow them to pass high-speed differential signals with good signal integrity. Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay of less than 250 ps , resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference. Their bandwidth is wide enough to pass High-Speed USB 2.0 differential signals ($480 \mathrm{Mb} / \mathrm{s}$).

Features

- R_{ON} is Typically 8.0Ω at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Crosstalk: $-30 \mathrm{~dB} @ 250 \mathrm{MHz}$
- Low Current Consumption: $1.0 \mu \mathrm{~A}$
- Channel On-Capacitance: 8.0 pF (Typical)
- V_{CC} Operating Range: 1.65 V to 4.5 V
- $>700 \mathrm{MHz}$ Bandwidth (or Data Frequency)
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Differential Signal Data Routing
- USB 2.0 Signal Routing

Important Information

- Continuous Current Rating Through Each Switch $\pm 300 \mathrm{~mA}$
- 8 kV I/O to GND ESD Protection

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Pin Connections and Logic Diagram
(NLAS7222B, Top View)
Table 1. PIN DESCRIPTION

Pin	Function
S	Select Input
OE	Output Enable
HSD1+, HSD1-, HSD2+, HSD2-, D+, D-	Data Ports

Figure 2. Pin Connections and Logic Diagram
(NLAS7222C, Top View)
Table 2. TRUTH TABLE

OE	\mathbf{s}	HSD1+, HSD1-	HSD2+, HSD2-
1	X	OFF	OFF
0	0	ON	OFF
0	1	OFF	ON

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	V_{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{V}_{\text {IS }}$	$\begin{aligned} & \hline \text { HSD1+, HSD1- } \\ & \text { HSD2+, HSD2- } \end{aligned}$	Analog Signal Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
	D+, D-		-0.5 to +5.5	
VIN	S, OE	Control Input Voltage, Output Enable Voltage	-0.5 to +5.5	V
I_{CC}	V_{CC}	Positive DC Supply Current	50	mA
$\mathrm{T}_{\text {S }}$		Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IIs_CON	$\begin{gathered} \text { HSD1+, HSD1- } \\ \text { HSD2+, HSD2-, } \\ \text { D+, D- } \end{gathered}$	Analog Signal Continuous Current-Closed Switch	± 300	mA
IIS_PK	$\begin{gathered} \text { HSD1+, HSD1- } \\ \text { HSD2,, HSD2-, } \\ \text { D+, D- } \end{gathered}$	Analog Signal Continuous Current 10\% Duty Cycle	± 500	mA
I_{N}	S, OE	Control Input Current, Output Enable Current	± 20	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
V_{CC}		Positive DC Supply Voltage	1.65	4.5	V
$\mathrm{~V}_{\mathrm{IS}}$	HSD1+, HSD1- HSD2+, HSD2-	Analog Signal Voltage	GND	V_{CC}	V
	$\mathrm{D}+, \mathrm{D}-$		GND	4.5	
	$\mathrm{~S}, \overline{\mathrm{OE}}$	Control Input Voltage, Output Enable Voltage	GND	V_{CC}	V
		Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

ESD PROTECTION

Symbol	Parameter	Value	Unit
ESD	Human Body Model - All Pins	2.0	kV
ESD	Human Body Model - I/O to GND	8.0	kV

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT, OUTPUT ENABLE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
V_{IH}	S, OE	Control Input, Output Enable HIGH Voltage (See Figure 3)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.4 \\ & 1.6 \end{aligned}$	-	-	V
$\mathrm{V}_{\text {IL }}$	S, OE	Control Input, Output Enable LOW Voltage (See Figure 3)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-		$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.5 \end{aligned}$	V
I_{N}	S, OE	Control Input, Output Enable Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\mathrm{CC}}$	1.65-4.5	-	-	± 1.0	$\mu \mathrm{A}$

SUPPLY AND LEAKAGE CURRENT (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
I_{CC}	V_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND ; I IOUT $=$ 0 A	1.65-4.5	-	-	1.0	$\mu \mathrm{A}$
$I_{\text {CCT }}$	V_{CC}	Increase in Icc per Control Voltage	$\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}$	3.6	-	-	10	$\mu \mathrm{A}$
I Oz	$\begin{aligned} & \text { HSD1+, HSD1- } \\ & \text { HSD2+, HSD2- } \end{aligned}$	OFF State Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}$	1.65-4.5	-	-	± 1.0	$\mu \mathrm{A}$
IOFF	D+, D-	Power OFF Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq 4.5 \mathrm{~V}$	0	-	-	± 1.0	$\mu \mathrm{A}$

HIGH SPEED ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	V_{cc} (V)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
$\mathrm{R}_{\text {ON }}$		On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}= \\ & 8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & 9.0 \\ & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \\ & 8.0 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$		On-Resistance Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}= \\ & 8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	1.6 1.5 1.4	-	Ω
$\Delta \mathrm{R}_{\text {ON }}$		On-Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}= \\ & 8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & 1.05 \\ & 0.85 \\ & 0.65 \end{aligned}$	-	Ω

DC ELECTRICAL CHARACTERISTICS (continued)

FULL SPEED ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
RON		On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{ON}}= \\ & 8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 9.0 \\ & 8.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} \hline 12 \\ 10.5 \\ 8.5 \end{gathered}$	Ω
RFLAT		On-Resistance Flatness	$\begin{aligned} & \mathrm{V}_{1 \mathrm{IS}}=0 \mathrm{~V} \text { to } 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}= \\ & 8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		1.6 1.5 1.4		Ω
$\Delta \mathrm{R}_{\text {ON }}$		On-Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{ON}}= \\ & 8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		2.20 2.45 2.65		Ω

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	V_{cc} (V)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
t_{ON}	Closed to Open	Turn-ON Time		1.65-4.5	-	14	30	ns
$\mathrm{t}_{\text {OFF }}$	Open to Closed	Turn-OFF Time		1.65-4.5	-	10	20	ns
$\mathrm{t}_{\text {BBM }}$		Break-Before-Make Delay		1.65-4.5	3.0	4.4	7.0	ns
BW		-3 dB Bandwidth	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65-4.5	-	500	-	MHz
			$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-	750	-	

ISOLATION (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
OIRR	Open	OFF-Isolation	$\mathrm{f}=250 \mathrm{MHz}$	1.65-4.5	-	-22	-	dB
$\mathrm{X}_{\text {TALK }}$	$\begin{gathered} \text { HSD1+ to } \\ \text { HSD1- } \end{gathered}$	Non-Adjacent Channel Crosstalk	$\mathrm{f}=250 \mathrm{MHz}$	1.65-4.5	-	-30	-	dB

NLAS7222B CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	S, OE	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	3.0	-	pF
$\mathrm{Con}^{\text {a }}$	$\begin{gathered} \text { D+ to } \\ \text { HSD1+ or } \\ \text { HSD2+ } \end{gathered}$	ON Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{OE}=0 \mathrm{~V} \\ & \mathrm{~S}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	-	8.0	-	pF
$\mathrm{C}_{\text {OFF }}$	$\begin{gathered} \hline \text { HSD1n or } \\ \text { HSD2n } \end{gathered}$	OFF Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {IS }}=3.3 \mathrm{~V} ; \mathrm{OE}=0 \mathrm{~V} \\ & \mathrm{~S}=3.3 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$	-	4.5	-	pF

NLAS7222C CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	S, OE	Control Pin, Output Enable Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	3.0	-	pF
$\mathrm{CoN}^{\text {a }}$	$\begin{gathered} \mathrm{D}+\text { to } \\ \text { HSD1+ or } \\ \text { HSD2+ } \end{gathered}$	ON Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \overline{\mathrm{OE}}=0 \mathrm{~V} \\ & \mathrm{~S}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	-	10	-	pF
$\mathrm{C}_{\text {OFF }}$	HSD1n or HSD2n	OFF Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {IS }}=3.3 \mathrm{~V} ; \overline{O E}=3.3 \mathrm{~V} \\ & \mathrm{~S}=3.3 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$	-	5.5	-	pF

Figure 3. $\mathrm{ICC}_{\mathrm{Cc}} \mathbf{v s} . \mathrm{V}_{\mathbf{I N}}$

Figure 4. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 5. ton/toff

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}^{\mathrm{V}_{\text {IN }}}}{}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$V_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

APPLICATIONS INFORMATION

The low on resistance and capacitance of the NLAS7222B provides for a high bandwidth analog switch suitable for applications such as USB data switching. Results for the USB 2.0 signal quality tests will be shown in this section, along with a description of the evaluation test board. The data for the eye diagram signal quality and jitter tests verifies that the NLAS7222B can be used as a data switch in low, full and high speed USB 2.0 systems.

Figures 8, 9 and 10 provide a description of the test evaluation board. The USB tests were conducted per the procedures provided by the USB Implementers Forum
(www.usb.org), the industry group responsible for defining the USB certification requirements. The test patterns were generated by a PC and MATLAB software, and were inputted to the analog switch through USB connectors J1 (HSD1) or J2 (HSD2). A USB certified device was plugged into connector J 4 to function as a data transceiver. The high speed and full speed tests used a flash memory device, while the low speed tests used a mouse. Test connectors J3 and J5 provide a direct connection of the USB device and were used to verify that the analog switch does not distort the data signals.

Figure 8. Schematic of the NLAS7222B USB Demo Board

Figure 9. Block Diagram of the NLAS7222B USB Demo Board

Figure 10. Photograph of the NLAS7222B USB Demo Board

ORDERING INFORMATION

Device	Marking	Package	Shipping †
NLAS7222BMUTAG	AS	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS7222BMUTBG	AS	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS7222CMUTBG	AT	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 5:1

DETAIL A Bottom View (Optional)

BOTTOM VIEW

MOUNTING FOOTPRINT

NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
FROM TERMINAL. FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40	
BSC		
E	1.80	
BSC		
e	0.40	
L	0.30	
L1	0.00	0.50
L3	0.40	0.15

GENERIC MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22493D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN UQFN, 1.4 X 1.8, 0.4P | PAGE 1 OF 1 |

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE + MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T MAX14651ETA+T

[^0]: ON Semiconductor and (IN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

