NLAST4501

Single SPST Analog Switch

The NLAST4501 is an analog switch manufactured in sub-micron silicon-gate CMOS technology. It achieves very low R_{ON} while maintaining extremely low power dissipation. The device is a bilateral switch suitable for switching either analog or digital signals, which may vary from zero to full supply voltage.

The NLAST4501 is a low voltage, TTL (low threshold) compatible device, pin for pin compatible with the MAX4501.

The Enable pin is compatible with standard TTL level outputs when supply voltage is nominal 5.0 V . It is also over-voltage tolerant, making it a very useful logic level translator.

Features

- Guaranteed R_{ON} of 32Ω at 5.5 V
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$
- Low Threshold Enable pin TTL compatible at 5.0 V
- TTL version and pin for pin with NLAS4501
- Provides Voltage translation for many different voltage levels
3.3 to 5.0 V , Enable pin may go as high as +5.5 V
1.8 to 3.3 V
1.8 to 2.5 V
- Improved version of MAX4501 (at any voltage between 2 and 5.5 V)
- Chip Complexity: FETs = 11
- $\mathrm{Pb}-$ Free Packages are Available

Figure 1. Pinout (Top View)

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
SC70-5/SC-88A/SOT-353
DF SUFFIX
CASE 419A

FUNCTION TABLE

On/Off Enable Input	State of Analog Switch
L	Off
H	On

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Positive DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Digital Input Voltage (Enable)	$\mathrm{V}_{\text {IN }}$	-0.5 to +7.0	V
Analog Output Voltage (V_{NO} or $\mathrm{V}_{\mathrm{COM}}$)	$\mathrm{V}_{\text {IS }}$	-0.5 to $\mathrm{V}_{C C}+0.5$	V
DC Current, Into or Out of Any Pin	I_{K}	± 20	mA
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature under Bias	T_{J}	+ 150	${ }^{\circ} \mathrm{C}$
Thermal Resistance SC70-5/SC-88A (Note 1) TSOP-5	θ_{JA}	$\begin{aligned} & 350 \\ & 230 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation in Still Air at $85^{\circ} \mathrm{C} \quad$ SC70-5/SC-88A	P_{D}	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mW
Moisture Sensitivity	MSL	Level 1	
Flammability Rating Oxygen Index: 30\% - 35\%	F_{R}	UL 94 V-0 @ 0.125 in	
ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\mathrm{V}_{\text {ESD }}$	$\begin{gathered} >2000 \\ >100 \\ N / A \end{gathered}$	V
Latchup Performance \quad Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	ILatchup	± 300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Positive DC Supply Voltage	V_{CC}	2.0	5.5	V
Digital Input Voltage (Enable)	V_{IN}	GND	5.5	V
Static or Dynamic Voltage Across an Off Switch	V_{IO}	GND	V_{CC}	V
Analog Input Voltage (NO, COM)	V_{IS}	GND	V_{CC}	V
Operating Temperature Range, All Package Types	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Time, (Enable Input)	(

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 2. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition	Symbol	V_{cc}	Guaranteed Max Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Enable Inputs		V_{IH}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
Maximum Low-Level Input Voltage, Enable Inputs		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	V
Maximum Input Leakage Current, Enable Inputs	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	IN	0 V to 5.5 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Maximum Quiescent Supply Current (per package)	Enable and VIS = V ${ }_{\text {CC }}$ or GND	ICC	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Condition	Symbol	$\mathrm{V}_{\text {cc }}$	Guaranteed Max Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85{ }^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Maximum ON Resistance (Figures 8-12)	$\begin{aligned} & \hline V_{I N}=V_{I H} \\ & V_{S I}=V_{\mathrm{CC}} \text { to GND } \\ & \mathrm{I}_{I S} \mathrm{I}=\leq 10.0 \mathrm{~mA} \end{aligned}$	RoN	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \\ & 35 \end{aligned}$	Ω
ON Resistance Flatness	$\begin{aligned} & \mathrm{V}_{I \mathrm{~N}}=\mathrm{V}_{1 \mathrm{H}} \\ & \mathrm{I}_{\mathrm{IS}} \mid=\leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{I S}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {FLAT(ON) }}$	4.5	4	4	5	Ω
Off Leakage Current, Pin 2 (Figure 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{NO}} 4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {NO(OFF) }}$	5.5	1	10	100	nA
Off Leakage Current, Pin 1 (Figure 3)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{array}$	$\mathrm{I}_{\text {Com(OFF) }}$	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

NLAST4501

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Parameter	Condition	Symbol	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Limit } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Unit
Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\text {IS }}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and $G N D$ (Figures 6 and 14)	BW	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 200 \\ & 220 \end{aligned}$	MHz
Maximum Feedthrough On Loss	$\mathrm{V}_{\text {IS }}=0 \mathrm{dBm} @ 10 \mathrm{kHz}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and $G N D$ (Figure 6)	V ONL	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Off-Channel Isolation	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figures 6 and 15)	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	-93	dB
Charge Injection Enable Input to Common I/O	$\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \mathrm{~F}_{I S}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}_{2}}=\mathrm{t}_{f}=3 \mathrm{~ns} \\ & \mathrm{R}_{I S}=0 \Omega, C_{L}=1000 \mathrm{pF} \\ & Q=C_{L}{ }^{*} \Delta \mathrm{~V}_{\mathrm{OUT}} \\ & \text { (Figures } 7 \text { and 16) } \end{aligned}$	Q	$\begin{aligned} & \hline 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise	$\begin{array}{r} \mathrm{F}_{\mathrm{IS}}=20 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IS}}=3.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ \mathrm{V}_{\text {IS }}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{array}$ (Figure 17)	THD	$\begin{aligned} & 3.3 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.3 \\ 0.15 \end{gathered}$	\%

Figure 3. Switch Leakage vs. Temperature

NLAST4501

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAST4501

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 7. Charge Injection: (Q)

Figure 8. Ron vs. $\mathrm{V}_{\text {com }}$ and $\mathrm{V}_{\mathrm{CC}}\left(@ 25^{\circ} \mathrm{C}\right)$

Figure 10. R R_{ON} vs. $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$

Figure 12. R_{ON} vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 9. R_{ON} vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$

Figure 11. R R_{ON} vs. $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 13. Switching Time vs. Supply Voltage, $\mathrm{T}=25^{\circ} \mathrm{C}$

NLAST4501

Figure 14. ON Channel Bandwidth and Phase Shift Over Frequency

Figure 15. Off Channel Isolation

Figure 16. Charge Injection vs. $\mathbf{V}_{\text {COM }}$

Figure 17. THD vs. Frequency

ORDERING INFORMATION

Device	Device Nomenclature					Package	Shipping ${ }^{\dagger}$
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NLAST4501DFT2	NL	AST	4501	DF	T2	$\begin{gathered} \hline \text { SC-88A/SOT-353/ } \\ \text { SC70 } \end{gathered}$	3000/Tape \& Reel
NLAST4501DFT2G						$\begin{gathered} \hline \text { SC-88A/SOT-353/ } \\ \text { SC70 } \\ \text { (Pb-Free) } \end{gathered}$	
NLAST4501DTT1				DT	T1	TSOP-5	
NLAST4501DTT1G						$\begin{aligned} & \text { TSOP-5 } \\ & \text { (Pb-Free) } \end{aligned}$	

[^0]

SOLDER FOOTPRINT

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
2. 419A-01 OBSOLETE. NEW STANDARD

419A-02.
DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.071	0.087	1.80	2.20	
B	0.045	0.053	1.15	1.35	
C	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC	0.65 BSC			
H	-		0.004	--1	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008		REF	0.20 REF	
S	0.079	0.087	2.00		

GENERIC MARKING
DIAGRAM*

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " -r ", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE 1
2. EMITTER	2. EMITTER	2. N/C
3. BASE	3. BASE	3. ANODE 2
4. COLLECTOR	4. COLLECTOR	4. CATHODE 2
5. COLLECTOR	5. CATHODE	5. CATHODE 1
STYLE 6:	STYLE 7:	STYLE 8:
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE
2. BASE 2	2. EMITTER	2. COLLECTOR
3. EMITTER 1	3. BASE	3. N/C
4. COLLECTOR	4. COLLECTOR	4. BASE
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER

STYLE 4:
 STYLE 5:

PIN 1. SOURCE 1

2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9

PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

PIN 1. CATHODE
2. COMMON ANODE
2. COMTHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

[^1]NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL

TRIMMED LEAD IS ALLOWED IN THIS LOCATION TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

DIM	MILLIMETERS	
	MIN	MAX
A	2.85	3.15
B	1.35	1.65
C	0.90	1.10
\mathbf{D}	0.25	0.50
\mathbf{G}	0.95	BSC
\mathbf{H}	0.01	0.10
\mathbf{J}	0.10	0.26
\mathbf{K}	0.20	0.60
\mathbf{M}	0°	10°
\mathbf{S}	2.50	3.00

GENERIC MARKING DIAGRAM*

Analog

XXX = Specific Device Code
A = Assembly Location
= Specific Device Code
M = Date Code
$\mathrm{Y}=$ Year \quad = Pb-Free Package
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

[^2]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^2]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

