Low Voltage Single Supply SPDT Analog Switch
 NLAST4599

The NLAST4599 is an advanced high speed CMOS single pole double throw analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This switch controls analog and digital voltages that may vary across the full power-supply range (from $V_{C C}$ to GND).

The device has been designed so the ON resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Select Pin Compatible with TTL Levels
- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: $\mathrm{HBM}>2000 \mathrm{~V}$; MM > 200 V
- Chip Complexity: 38 FETs
- NLVAST Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pin Assignment

Figure 2. Logic Symbol

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Positive DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Analog Input Voltage ($\mathrm{V}_{\text {NO }}$ or $\mathrm{V}_{\mathrm{COM}}$)	$\mathrm{V}_{\text {IS }}$	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}+0.5$	V
Digital Select Input Voltage	$\mathrm{V}_{\text {IN }}$	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$	V
DC Current, Into or Out of Any Pin	I_{K}	± 50	mA
$\begin{array}{ll}\text { Power Dissipation in Still Air } & \text { SC-88 } \\ & \text { TSOP6 }\end{array}$	P_{D}	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	mW
Storage Temperature Range	TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1mm from Case for 10 seconds	TL	260	${ }^{\circ} \mathrm{C}$
Junction Temperature Under Bias	T_{J}	150	${ }^{\circ} \mathrm{C}$
ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\mathrm{V}_{\text {ESD }}$	$\begin{gathered} \hline 2000 \\ 200 \\ N / A \end{gathered}$	V
Latchup Performance Above $\mathrm{V}_{\text {cc }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	ILATCHUP	± 300	mA
Thermal Resistance SC-88 TSOP6	$\theta_{\text {JA }}$	$\begin{aligned} & 333 \\ & 333 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V_{CC}	2.0	5.5	V
Digital Select Input Voltage	V_{IN}	GND	5.5	V
Analog Input Voltage (NC, NO, COM)	V_{IS}	GND	V_{CC}	V
Operating Temperature Range	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Time SELECT	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			ns / V
			0	100
20				

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

NLAST4599

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Select Input		V_{IH}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
Maximum Low-Level Input Voltage, Select Input		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
Maximum Input Leakage Current, Select Input	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	1 N	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Power Off Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	IOFF	0	± 10	± 10	± 10	$\mu \mathrm{A}$
Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	Icc	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Maximum "ON" Resistance (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{I S}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \end{aligned}$	R_{ON}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 105 \\ & 55 \\ & 40 \\ & 35 \end{aligned}$	Ω
ON Resistance Flatness (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {FLAT }}$ (ON)	4.5	4	4	5	Ω
ON Resistance Match Between Channels	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{R}_{\mathrm{ON}}$ (ON)	4.5	2	2	3	Ω
NO or NC Off Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$ $l_{\mathrm{NO}(\mathrm{OFF})}$	5.5	1	10	100	nA
COM ON Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} 1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{NC}} \text { floating } \\ & \mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{NO}} \text { floating } \\ & \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {COM(ON) }}$	5.5	1	10	100	nA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Parameter	Test Conditions	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$V_{\text {IS }}$ (V)	Guaranteed Max Limit							Unit
					-55 to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	Min	Max	
Turn-On Time (Figures 12 and 13)	$R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ (Figures 5 and 6)	t_{ON}	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 2.0 \\ 3.0 \\ 3.0 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 23 \\ 16 \\ 11 \\ 9 \end{gathered}$	$\begin{aligned} & 28 \\ & 21 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	ns
Turn-Off Time (Figures 12 and 13)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 5 and 6)	toff	$\begin{array}{\|l\|} \hline 2.5 \\ 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 2.0 \\ 3.0 \\ 3.0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 12 \\ 10 \\ 9 \\ 8 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
Minimum Break-BeforeMake Time	$\begin{aligned} & \mathrm{V}_{\text {IS }}=3.0 \mathrm{~V} \text { (Figure 4) } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$t_{\text {BBM }}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 2.0 \\ 3.0 \\ 3.0 \end{array}$	1 1 1 1	$\begin{gathered} 12 \\ 11 \\ 6 \\ 5 \end{gathered}$		1 1 1 1		1 1 1 1		ns
			Typical @ 25, VCC = 5.0 V									
Maximum Input Capacitance, Select Input Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on)		C_{IN} C_{NO} or C_{NC} $\mathrm{C}_{\mathrm{COM}}$ $\mathrm{C}_{(\mathrm{ON})}$	$\begin{gathered} \hline 8 \\ 10 \\ 10 \\ 20 \\ \hline \end{gathered}$									pF

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Parameter	Condition	Symbol	$\underset{\mathbf{V}}{\mathrm{V}_{\mathbf{C}}}$	$\begin{aligned} & \text { Typical } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Unit
Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	BW	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \\ & 200 \end{aligned}$	MHz
Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ONL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-2 \\ & -2 \\ & -2 \end{aligned}$	dB
Off-Channel Isolation (Figure 10)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}$ V_{IN} centered between V_{CC} and GND (Figure 7)	VISO	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \end{aligned}$	dB
Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & \hline V_{I N}=V_{C C \text { to }} G N D, F_{I S}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns} \\ & R_{I S}=0 \Omega, C_{L}=1000 \mathrm{pF} \\ & Q=C_{L} * \Delta V_{\text {OUT, (Figure 8) }} \end{aligned}$	Q	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V} \text { PP sine wave } \end{aligned}$	THD	5.5	0.1	\%

ORDERING INFORMATION

Device		
NLAST4599DFT2G	Package	Shipping ${ }^{\dagger}$
NLAST4599DTT1G	SC-88/SC-70/SOT-363 (Pb-Free)	$3000 /$ Tape \& Reel
NLVAST4599DTT1G*	TSOP-6 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLVAST Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Figure 4. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAST4599

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Output

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage vs. Temperature

NLAST4599

Figure 10. Bandwidth and Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. V_{CC} at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 11. Phase vs. Frequency

Figure 13. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. Temp

Figure 15. Charge Injection vs. COM Voltage

Figure 16. Icc vs. Temp, $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$ \& 5 V

Figure 18. $\mathrm{R}_{\mathrm{ON}} \mathrm{Vs}$ Temp, $\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$

Figure 20. R $_{\text {ON }}$ vs. Temp, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 17. R $_{\text {ON }}$ vs. $V_{\text {CC }}$, Temp $=25^{\circ} \mathrm{C}$

Figure 19. R_{ON} vs. $\mathrm{Temp}^{\mathrm{V}} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 21. R R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 22. R $_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 23. R $_{\mathrm{ON}}$ vs. Temp, $\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$

Figure 24. Tape Ends for Finished Goods

Figure 25. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation

Figure 26. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	\mathbf{G}	t Max
8 mm	T1, T2	178 mm $(7 \mathrm{in})$	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$ $(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	14.4 mm $(0.56 \mathrm{in})$

Figure 27. Reel Winding Direction

DATE 12 JUN 2012

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
3. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

DIM	MILLIMETERS				
	MIN	NOM	MAX		
A	0.90	1.00	1.10		
A1	0.01	0.06	0.10		
b	0.25	0.38	0.50		
c	0.10	0.18	0.26		
D	2.90	3.00	3.10		
E	2.50	2.75	3.00		
E1	1.30	1.50	1.70		
e	0.85	0.95	1.05		
L	0.20	0.40			0.60
L2	0.25 BSC				
M	0°	-			

STYLE 1:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SOURCE
5. DRAIN
6. DRAIN
STYLE 2:
PIN 1. EMITTER 2
2. BASE 1
3. COLLECTOR 1
4. EMITTER 1
5. BASE 2
6. COLLECTOR 2

STYLE 3:
PIN 1. ENABLE
STYLE 4
PIN 1. N/C
STYLE 5:
PIN 1. EMITTER 2
STYLE 6:
2. N / C
3. NOT USED
2. BASE 2

PIN 1. COLLECTOR

$$
\begin{aligned}
& \text { 2. N/C } \\
& \text { 3. R BOOST }
\end{aligned}
$$

4. Vz 3. COLLECTOR 1 4. EMITTER 5. BASE 1 3. BASE 4. GROUND
5. COLLECTOR 2
6. V in
7. LOAD
8. EMITTER
9. V out

STYLE 10:
PIN 1. D
STYLE 11
6. COLLECTOR

STYLE 7:
 PIN 1.

STYLE 8:
STYLE 9:
PIN 1. SOURCE
STYLE 12 :
PIN 1. LOW VOLTAGE GATE

1. D(OU
2. GND
3. DRAIN 2

PIN 1. I/O
2. DRAIN
3. SOURCE
3. $\mathrm{D}(\mathrm{OUT})-$
3. DRAIN 2
2. GROUND
3. BASE
4. DRAIN
4. D(IN)-
4. SOURCE 2
5. GATE 1
3. $1 / O$
4. $1 / O$
5. DRAIN
5. VBUS
6. DRAIN 1/GATE 2

> 4. 1/U 6. I/O STYLE 13:
STYLE 14:
PIN 1. ANODE
2. SOURCE
3. GATE
4. CATHODE/DRAIN
5. CATHODE/DRAIN
6. CATHODE/DRAIN

STYLE 15: STYLE 16:
STYLE 17:
PIN 1. ANODE
PIN 1. GATE 1
2. SOURCE
3. GATE 2
4. DRAIN 2
5. SOURCE 1
6. DRAIN 1 2. SOURCE 3. GATE PIN 1. ANODE/CATHODE

PIN 1. EMITTER 2. BASE
2. BASE
$\begin{array}{ll}\text { 3. GATE } & \text { 3. EMITTER } \\ \text { 4. DRAIN } & \text { 4. COLLECTOR }\end{array}$
3. ANODE/CATHODE
4. ANODE
5. N/C
5. ANODE
5. CATHODE 6. CATHODE/DRAIN
6. CATHODE 6. CATHODE
6. COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

IC
XXX = Specific Device Code
A =Assembly Location
Y = Year
W = Work Week

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " -", may or may not be present.

| DOCUMENT NUMBER: | 98ASB14888C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-6 | PAGE 1 OF 1 |

[^0] rights of others.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^1] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28 :	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

