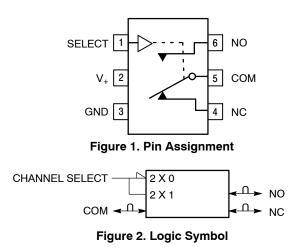
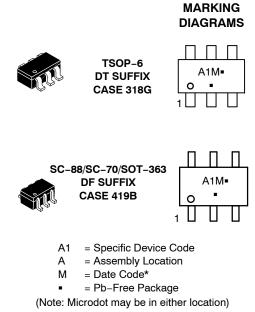
onsemi

Low Voltage Single Supply SPDT Analog Switch

NLAST4599


The NLAST4599 is an advanced high speed CMOS single pole – double throw analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This switch controls analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND).


The device has been designed so the ON resistance (R_{ON}) is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Select Pin Compatible with TTL Levels
- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break–Before–Make Circuitry
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; MM > 200 V
- Chip Complexity: 38 FETs
- NLVAST Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

*Date Code orientation and/or position and underbar may vary depending upon manufacturing location.

FUNCTION TABLE

Select	ON Channel
L	NC
н	NO

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS (Note 1)

	Parameter	Symbol	Value	Unit
Positive DC Supply Volta	age	V _{CC}	-0.5 to +7.0	V
Analog Input Voltage (V _N	IO or V _{COM})	V _{IS}	$-0.5 \le V_{IS} \le V_{CC} + 0.5$	V
Digital Select Input Volta	ge	V _{IN}	$-0.5 \leq V_l \leq +\ 7.0$	V
DC Current, Into or Out of	of Any Pin	I _{IK}	±50	mA
Power Dissipation in Still	Air SC-88 TSOP6	P _D	200 200	mW
Storage Temperature Ra	nge	T _{STG}	–65 to +150	°C
Lead Temperature, 1mm	from Case for 10 seconds	TL	260	°C
Junction Temperature Ur	nder Bias	ТJ	150	°C
ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	V _{ESD}	2000 200 N/A	V
Latchup Performance	Above V_{CC} and Below GND at 125°C (Note 5)	ILATCHUP	±300	mA
Thermal Resistance	SC-88 TSOP6	θ_{JA}	333 333	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
- 2. Tested to EIA/JESD22-A114-A
- 3. Tested to EIA/JESD22-A115-A
- 4. Tested to JESD22-C101-A
- 5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V _{CC}	2.0	5.5	V
Digital Select Input Voltage	V _{IN}	GND	5.5	V
Analog Input Voltage (NC, NO, COM)	V _{IS}	GND	V _{CC}	V
Operating Temperature Range	T _A	-55	+125	°C
Input Rise or Fall Time $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \\ V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	t _r , t _f	0 0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

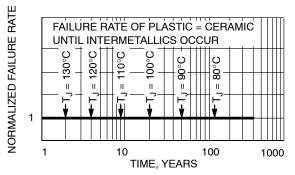


Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS – Digital Section (Voltages Referenced to GND)

				Guaranteed Limit			
Parameter	Condition	Symbol	V _{CC}	–55 to 25°C	<85°C	<125°C	Unit
Minimum High-Level Input Voltage, Select Input		V _{IH}	3.0 4.5 5.5	2.0 2.0 2.0	2.0 2.0 2.0	2.0 2.0 2.0	V
Maximum Low-Level Input Voltage, Select Input		V _{IL}	3.0 4.5 5.5	0.5 0.8 0.8	0.5 0.8 0.8	0.5 0.8 0.8	V
Maximum Input Leakage Current, Select Input	V _{IN} = 5.5 V or GND	I _{IN}	5.5	<u>+</u> 0.1	<u>+</u> 1.0	<u>+</u> 1.0	μΑ
Power Off Leakage Current	V _{IN} = 5.5 V or GND	I _{OFF}	0	<u>+</u> 10	<u>+</u> 10	<u>+</u> 10	μA
Maximum Quiescent Supply Current	Select and $V_{IS} = V_{CC}$ or GND	I _{CC}	5.5	1.0	1.0	2.0	μΑ

DC ELECTRICAL CHARACTERISTICS – Analog Section

				Guara	nteed Lim	nit	
Parameter	Condition	Symbol	V _{CC}	–55 to 25°C	<85°C	<125°C	Unit
Maximum "ON" Resistance (Figures 17 – 23)	$ \begin{array}{l} V_{IN} = V_{IL} \mbox{ or } V_{IH} \\ V_{IS} = GND \mbox{ to } V_{CC} \\ I_{IN}I \leq 10.0 \mbox{ mA} \end{array} $	R _{ON}	2.5 3.0 4.5 5.5	85 45 30 25	95 50 35 30	105 55 40 35	Ω
ON Resistance Flatness (Figures 17 – 23)		R _{FLAT} (ON)	4.5	4	4	5	Ω
ON Resistance Match Between Channels		ΔR _{ON} (ON)	4.5	2	2	3	Ω
NO or NC Off Leakage Current (Figure 9)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NO} \text{ or } V_{NC} = 1.0 V_{COM} 4.5 V$	I _{NC(OFF)} I _{NO(OFF)}	5.5	1	10	100	nA
COM ON Leakage Current (Figure 9)		I _{COM(ON)}	5.5	1	10	100	nA

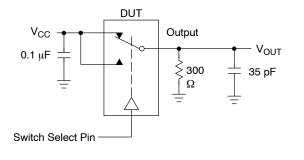
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

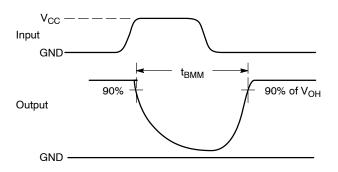
AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

					Guaranteed Max Limit							
			v_{cc}	VIS	-5	5 to 25	5°C	<8	5°C	<12	25°C	
Parameter	Test Conditions	Symbol	(V)	(V)	Min	Тур*	Max	Min	Max	Min	Max	Unit
Turn–On Time	$R_L = 300 \Omega, C_L = 35 pF$	t _{ON}	2.5	2.0	5	23	28	5	30	5	30	ns
(Figures 12 and 13)	(Figures 5 and 6)		3.0	2.0	5	16	21	5	25	5	25	
			4.5	3.0	2	11	16	2	20	2	20	
			5.5	3.0	2	9	14	2	20	2	20	
Turn–Off Time	R_L = 300 Ω, C_L = 35 pF	t _{OFF}	2.5	2.0	1	7	12	1	15	1	15	ns
(Figures 12 and 13)	(Figures 5 and 6)		3.0	2.0	1	5	10	1	15	1	15	
			4.5	3.0	1	4	9	1	12	1	12	
			5.5	3.0	1	3	8	1	12	1	12	
Minimum Break-Before-	V _{IS} = 3.0 V (Figure 4)	t _{BBM}	2.5	2.0	1	12		1		1		ns
Make Time	R_L = 300 Ω , C_L = 35 pF		3.0	2.0	1	11		1		1		
			4.5	3.0	1	6		1		1		
			5.5	3.0	1	5		1		1		
					Тур	oical @	25, VC	CC = 5	.0 V			
Maximum Input Capacitance Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on)	, Select Input	C _{IN} C _{NO} or C _{NC} C _{COM} C _(ON)					8 10 10 20					pF

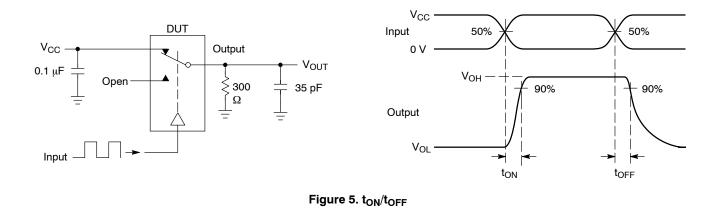
*Typical Characteristics are at 25°C.

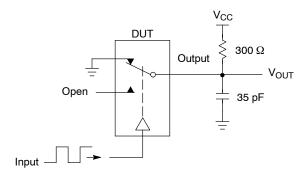
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

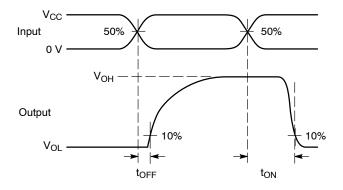

Parameter	Condition	Symbol	V _{CC} V	Typical 25°C	Unit
Maximum On–Channel –3dB Bandwidth or Minimum Frequency Response (Figure 10)	$V_{IN} = 0 \text{ dBm}$ V_{IN} centered between V_{CC} and GND (Figure 7)	BW	3.0 4.5 5.5	170 200 200	MHz
Maximum Feedthrough On Loss	$V_{IN} = 0 \text{ dBm } @ 100 \text{ kHz to 50 MHz}$ V_{IN} centered between V_{CC} and GND (Figure 7)	V _{ONL}	3.0 4.5 5.5	-2 -2 -2	dB
Off-Channel Isolation (Figure 10)	f = 100 kHz; V_{IS} = 1 V RMS V_{IN} centered between V_{CC} and GND (Figure 7)	V _{ISO}	3.0 4.5 5.5	-93 -93 -93	dB
Charge Injection Select Input to Common I/O (Figure 15)	$ \begin{array}{l} V_{IN} = V_{CC \ to} \ \text{GND}, \ F_{IS} = 20 \ \text{kHz} \\ t_r = t_f = 3 \ \text{ns} \\ R_{IS} = 0 \ \Omega, \ C_L = 1000 \ \text{pF} \\ Q = C_L \ ^* \Delta V_{OUT,} \ (\text{Figure 8}) \end{array} $	Q	3.0 5.5	1.5 3.0	рС
Total Harmonic Distortion THD + Noise (Figure 14)	F_{IS} = 20 Hz to 100 kHz, R_L = Rgen = 600 $\Omega,$ C_L = 50 pF V_{IS} = 5.0 V_{PP} sine wave	THD	5.5	0.1	%


ORDERING INFORMATION

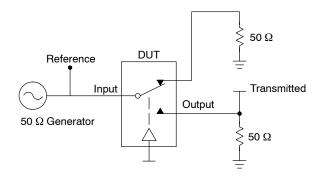
Device	Package	Shipping [†]	
NLAST4599DFT2G	SC-88/SC-70/SOT-363 (Pb-Free)	3000 / Tape & Reel	
NLAST4599DTT1G	TSOP-6		
NLVAST4599DTT1G*	(Pb-Free)	3000 / Tape & Reel	

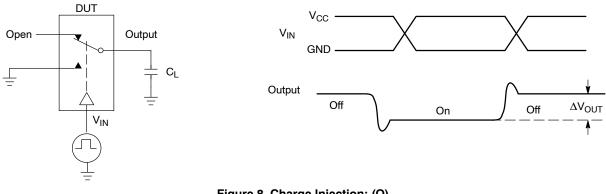

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*NLVAST Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.









Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

 V_{ISO} = Off Channel Isolation = 20 Log $\left(\frac{V_{OUT}}{VIN}\right)$ for V_{IN} at 100 kHz V_{ONL} = On Channel Loss = 20 Log $\left(\frac{V_{OUT}}{V_{IN}}\right)$ for V_{IN} at 100 kHz to 50 MHz

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL

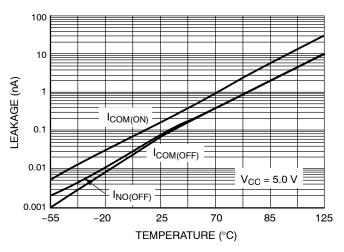
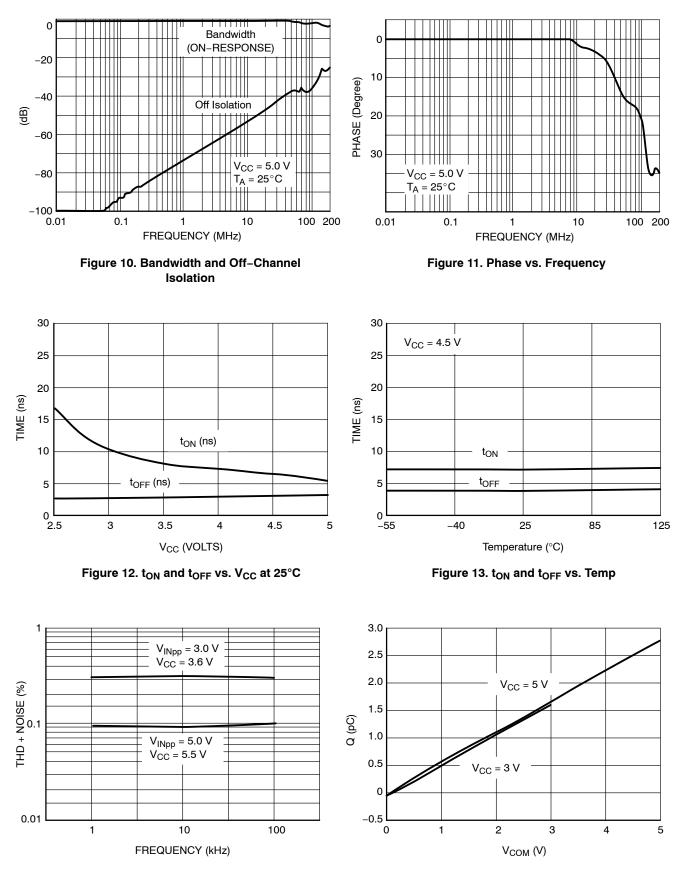



Figure 9. Switch Leakage vs. Temperature

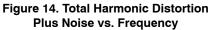
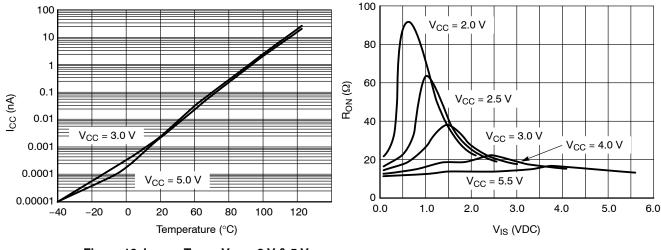
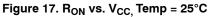
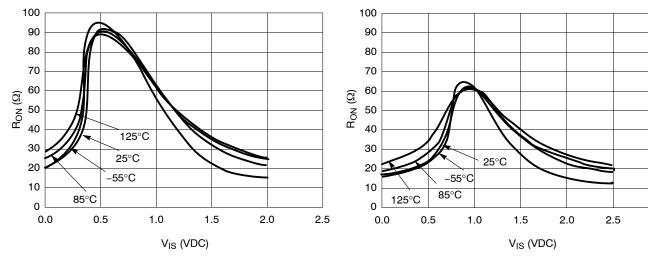
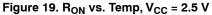





Figure 15. Charge Injection vs. COM Voltage



3.0

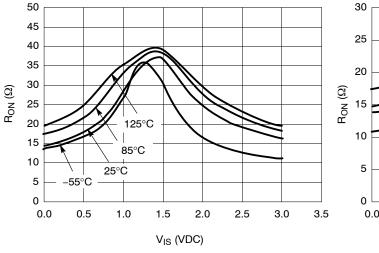
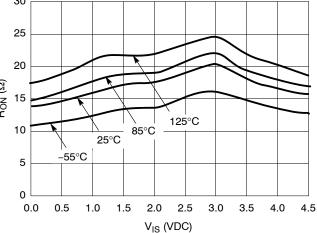
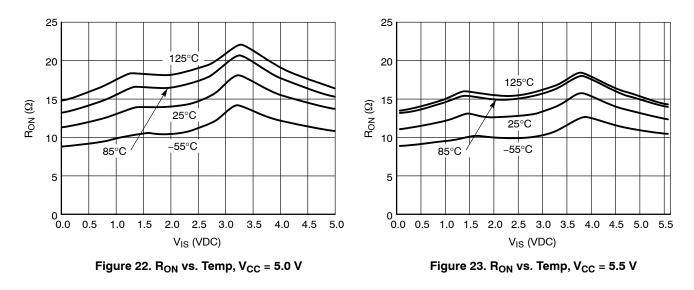




Figure 20. R_{ON} vs. Temp, V_{CC} = 3.0 V

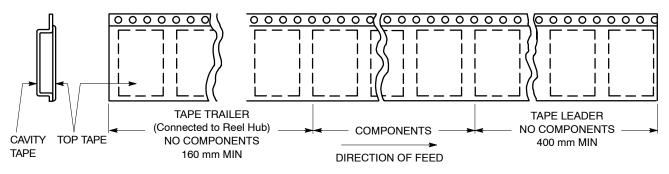
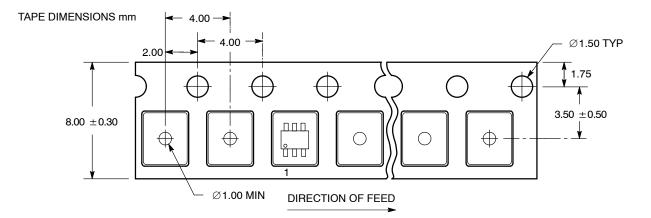
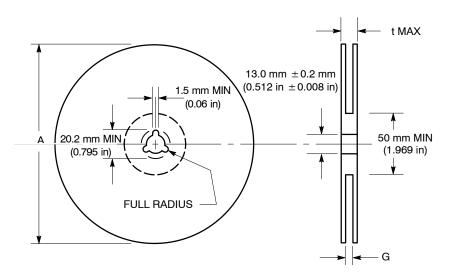
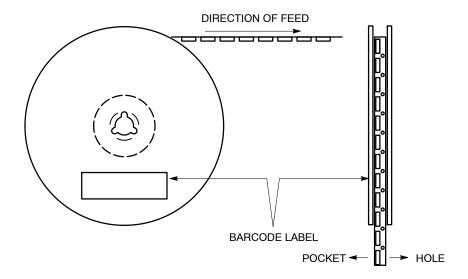
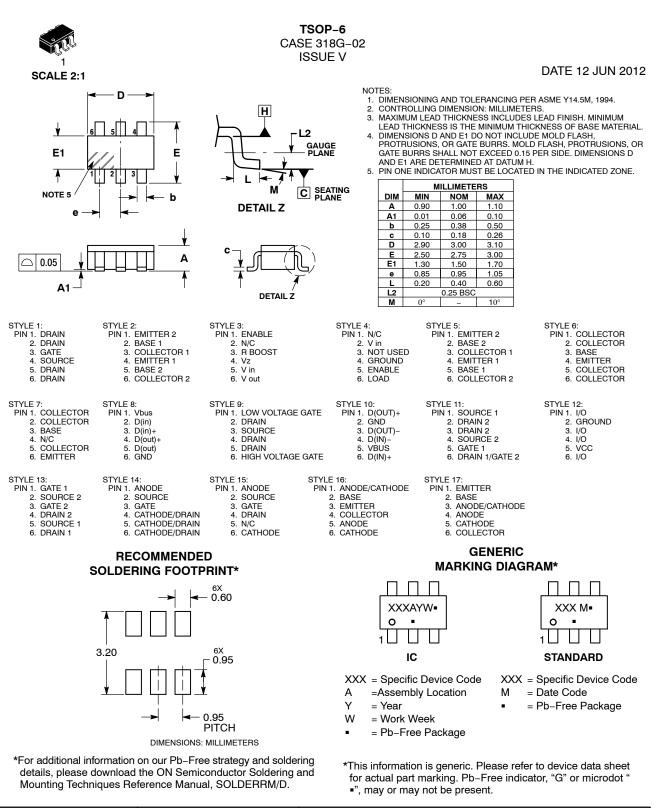


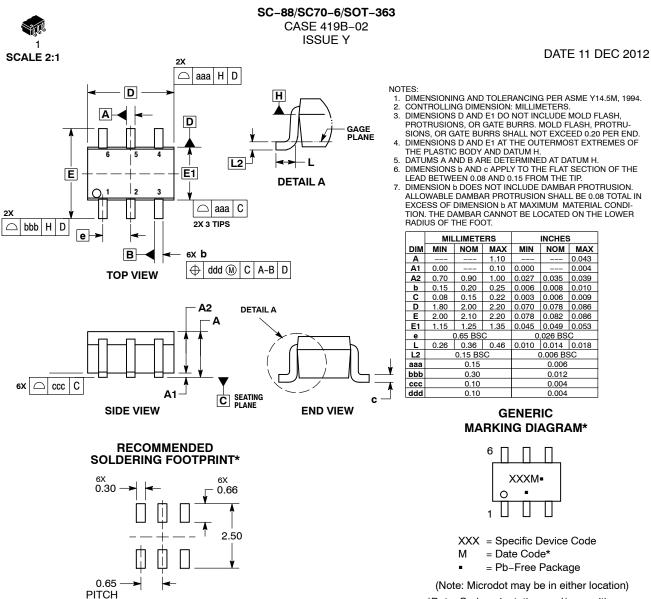
Figure 24. Tape Ends for Finished Goods


Figure 25. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation


REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	G	t Max
8 mm	T1, T2	178 mm (7 in)	8.4 mm, + 1.5 mm, -0.0 (0.33 in + 0.059 in, -0.00)	14.4 mm (0.56 in)


98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
TSOP-6		PAGE 1 OF 1				
	98ASB14888C TSOP-6	98ASB14888C Printed versions are uncontrolled except when stamped "CONTROLLED				

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for dhers.

0.043

0.004

- XXX = Specific Device Code

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42985B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SC-88/SC70-6/SOT-363 PAGE 1 OF 2 ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding			

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

FSA3051TMX NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB DG403DY 099044FB MAX4762ETB+ NLAS3799BMNR2G NLAS5123MNR2G ISL84684IR PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE NX3L1T5157GMZ ADG714BCPZ-REEL7 DG333ALDW-T1-E3 ISL43113IB ISL43140IB ISL43140IBZ-T ISL43143IR ISL43L120IR ISL43L121IR ISL43L122IR ISL43L220IR ISL43L410IR ISL43L420IR ISL43L710IR ISL43140IBZ-T ISL43143IR ISL43L120IR ISL43L121IR ISL43L122IR ISL43L220IR ISL43L410IR ISL43L420IR ISL43L710IR ISL43L711IR ISL43L712IR ISL84053IA ISL84514IB ISL84516IB ISL84684IUZ-T LNLASB3157DFT2G NLAS324US TPW4053-SR HT4069ARZ CD4052BM RS2252XTQC16 RS2166XC5 4066G-S14-R WAS4642Q-24/TR WS4612EAA-5/TR TS5A3157DBVR(UMW) SN74LVC1G66DBVR SN74LVC1G66DCKR(UMW)