Negative Voltage SPDT Switch

The NLHV3157N is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. The device passes analog and digital negative voltages that may vary across the full power–supply range (from V_{EE} to GND).

Features

- Operating Voltage Range: $V_{EE} = -12 \text{ V}$ to -4 V
- Switch Signal Voltage Range: $V_{IS} = V_{EE}$ to GND
- Positive Control Signal Voltage: $V_{IN} = 0$ to 3.3 V
- Low ON Resistance: $R_{ON} \le 5 \Omega$ @ $V_{EE} = -10 \text{ V}$
- Latch-up Performance Exceeds 200 mA
- Available in: SC88 6-Pin Package
- These Devices are Pb–Free, Halogen–Free/BFR-Free and are RoHS–Compliant

Figure 1. Pin Assignment and logic Diagram

ON Semiconductor®

www.onsemi.com

SC-88 DF SUFFIX CASE 419B

N7 = Device Code
M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

FUNCTION TABLE

Select Input	Function
L	B0 Connected to A
Н	B1 Connected to A

ORDERING INFORMATION

Device	Package	Shipping [†]
NLHV3157NDFT2G	SC88 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	R	ating	Value	Unit
V _{EE}	DC Supply Voltage		-13 to +0.5	V
V _{IS}	Analog Input Voltage (Note 1)		V _{EE} -0.5 to +0.5	V
V _{IN}	Digital Select Input Voltage (Note 1)	Digital Select Input Voltage (Note 1)		V
I _{IOK}	Switch Input/Output diode current		±50	mA
I _{IK}	Select input diode current		-50	mA
P _D	Power Dissipation in Still Air		60	mW
TL	Lead Temperature, 1 mm from Case	for 10 seconds	260	°C
TJ	Junction Bias Under Bias		150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL94-V0 (0.125 in)	°C
ΙL	Latch-up Current (Note1)	Below GND and above V _{EE} at 125°C	±200	mA
		Below GND and above $V_{\mbox{\scriptsize EE}}$ at 25°C	±300	1
T _s	Storage Temperature		-65 to +150	°C
θ_{JA}	Thermal Resistance		400	°C/W
ESD	ESD Protection	Human Body Model	3000	V
		Machine Model	150	7

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Symbol	Parameter	Min	Max	Unit
V_{EE}	DC Supply Voltage	-12	-4	V
V _S	Switch Input / Output Voltage (B0, B1, A)	V_{EE}	GND	V
V _{IN}	Digital Select Input Voltage	GND	3.3	V
T_A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Transition Rise or Fall Time (Select Input)	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{2.} Select input must be held HIGH or LOW, it must not float.

DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND; Typical characteristics are T_A at 25°C.)

				-	-55° to 125°	С	
Symbol	Parameter	Condition	V _{EE} , V	Min	Тур	Max	Unit
SELECT IN	IPUT				•		
V _{IH}	Minimum High-Level		< -10	2.0		3.3	V
	Input Voltage		−10 to < −8	1.8		3.3	
			-8 to < −6	1.7		3.3	
			≥ -6	1.4		3.3	
V_{IL}	Maximum Low-Level		< -10	0		0.7	V
	Input Voltage		−10 to −6	0		0.7	
			-8 to < −6	0		0.7	
			≥ -6	0		0.5	
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 3.3 \text{ V or GND}$	-10		±0.2	±20	μΑ
POWER SU	JPPLY						
I _{CC}	Maximum Quiescent Supply Current	Select = 3.3 V or GND, V _{IS} = V _{EE} or GND	−10 to −4		25	50	μА
ANALOG S	SWITCH	•	•		•	•	
R _{ON}	Maximum ON	V _{IN} = V _{IL} or V _{IH}	-12		2.6	4.5	Ω
	Resistance (Note 3)	$V_{IS} = V_{EE}$ to GND $I_{O} \le 10$ mA	-10		3.0	5	
		10 = 10 111A	-8		3.5	5.8	1
			-6		4.5	7.5	1
		$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = V_{EE} \text{ to GND}$ $I_O \le 5 \text{ mA}$	-4		9	15	
R _{FLAT}	ON Resistance	$V_{IN} = V_{IL}$ or V_{IH}	-12		0.4		Ω
	Flatness (Notes 3, 4, 6)	$V_{IS} = V_{EE}$ to GND $I_{O} \le 10$ mA	-10		1.2		
		10 = 10 111A	-8		1.7		1
			-6		2.5		1
		$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = V_{EE} \text{ to GND}$ $I_O \le 5 \text{ mA}$	-4		6		
ΔR_{ON}	R _{ON} Mismatch	$I_A = -10 \text{ mA}, V_{Bn} = -8.4 \text{ V}$	-12		0.2		Ω
	Between (Notes 3, 4, 5)	$I_A = -10 \text{ mA}, V_{Bn} = -7 \text{ V}$	-10		0.2		
		$I_A = -10 \text{ mA}, V_{Bn} = -5.6 \text{ V}$	-8		0.25		
		$I_A = -10 \text{ mA}, V_{Bn} = -4.2 \text{ V}$	-6		0.25		1
		$I_A = -5 \text{ mA}, V_{Bn} = -2.8 \text{ V}$	-4		0.3		1
I _{NC(OFF)} , I _{NO(OFF)}	NC or NO OFF Leakage Current (Figure 9)	$V_{IN} = V_{IL}$ or V_{IH} , $V_{Bn} = GND$, $V_A = V_{EE}$ to GND	-10		±1.0	±20	μΑ
I _{COM(ON)}	COM ON Leakage Current (Figure 9)	$\begin{split} &V_{IN} = V_{IL} \text{ or } V_{IH}; \\ &V_A = \text{GND V or } V_{EE}; \\ &V_{B1} = \text{GND or } V_{EE} \text{ with } V_{B0} \\ &\text{floating, or} \\ &V_{B0} = \text{GND or } V_{EE} \text{ with } V_{B1} \\ &\text{floating} \end{split}$	-10		±2.0	±20	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower

of the voltages on the two (A or B Ports).

^{4.} Parameter is characterized but not tested in production.

ΔR_{ON} = R_{ON}min measured at identical V_{EE}, temperature and voltage levels.
 Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions.

$\textbf{AC ELECTRICAL CHARACTERISTICS} \text{ (Voltages referenced to GND; Typical characteristics are } T_A \text{ at } 25^{\circ}\text{C.)}$

				−55° to 125°C		С	
Symbol	Parameter	Condition	V _{EE} , V	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	Propagation Delay, Bus to Bus (Note 8) (A to B _n)	C _L = 100 pF (Figures 2, 3)	−12 to −4			2	ns
t _{PZL} , t _{PZH}	Switch Enable Time	C _L = 100 pF (Figures 2, 3)	-12			220	ns
	Turn-On Time (A to B _n)		-10			175	
	(/ (10 D _n)		-8			165	
			-6			165	
			-4			200	
t_{PLZ},t_{PHZ}	Switch Disable Time	C _L = 100 pF (Figures 2, 3)	-12			225	ns
	Turn-Off Time (A to B _n)		-10			155	
	(A to D _n)		-8			150	
			-6			120	
			-4			145	
t _B	Switch Break Time	$R_L = 50 \Omega$, $C_L = 100 pF$, $V_{IS} = -2.5 V$ (Figure 4)	-12	10		50	ns
		V _{IS} = -2.5 V (Figure 4)	-10	10		60	
			-8	20		75	
			-6	20		90	
			-4	50		135	
t _{POR}	Power ON Reset Time	Measured from V _{EE} = -4 V	−12 to −4			20	μS
Q	Charge Injection	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V,}$	-12		170		рС
	(Note 7)	$R_{GEN} = 0 \Omega $ (Figure 5)	-10		120		
			-8		95		
			-6		55		
			-4		40		
OIRR	Off-Isolation (Note 9)	$R_L = 50 \Omega$, $f = 10 MHz$ (Figure 6)	−12 to −4		-33		dB
Xtalk	Crosstalk	$R_L = 50 \Omega$, $f = 10 MHz$ (Figure 7)	−12 to −4		-42		dB
BW	-3 dB Bandwidth	R_L = 50 Ω (Figure 10)	−12 to −4		200		MHz

CAPACITANCES (Note 10)

Symbol	Parameter	Test Conditions	Typical @ 25°C	Unit
C _{IN}	Input Capacitance, Select Inputs	V _{EE} = −12 V	6	pF
C _{IOB}	B-Port OFF Capacitance	$V_{EE} = -10 \text{ V}$	45	pF
C _{IOA_ON}	A Port Capacitance when Switch is Enabled	V _{EE} = −10 V	100	pF

 $^{10.}T_A = +25$ °C, f = 1 MHz, Capacitance is characterized but not tested in production.

Guaranteed by Design.
 This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the ON Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
 Off Isolation = 20 log10 [VA/VBn].

Note: Input V_{IS} driven by 50 Ω source terminated by 50 Ω . Note: C_L includes load and stray capacitance. Input PRR = 100 kHz, t_W = 5 μ s.

Parameter	V _I	V _{IS}
t _{PLH} / t _{PHL}	Open	Source
t _{PZL} / t _{PLZ}	GND	V _{EE}
t _{PZH} / t _{PHZ}	2 x V _{EE}	GND

Figure 2. AC Test Circuit

Figure 3. AC Test Waveforms

Figure 4. Switch Break Interval Timing

Figure 5. Charge Injection Test

Figure 6. Off Isolation

Figure 7. Crosstalk

Figure 8. Channel Off Capacitance

Figure 9. Channel On Capacitance

Figure 10. Bandwidth

Figure 11. Typical Application

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363

CASE 419B-02 **ISSUE Y**

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 DIMENSIONS D AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
 DIMENSIONS B OOT INCLUDE DAMBAR PROTRUSION

- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN
 EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MIL	MILLIMETERS INCHES			3	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е	0.65 BSC			0	.026 BS	С
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			(0.006 BS	SC
aaa		0.15 0.006				
bbb	0.30 0.012					
ССС	0.10 0.004					
ddd		0.10			0.004	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G
PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX
PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G
RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T
MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G
NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4
ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118 ISL43410IUZ