NLSV8T240

8-Bit Dual-Supply Inverting Level Translator

The NLSV8T240 is a 8-bit configurable dual-supply voltage level translator. The input A_{n} and output B_{n} ports are designed to track two different power supply rails, $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_{n} to the output B_{n} port.

Features

- Wide $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential $\mathrm{V}_{\mathrm{CCA}}$ and $\mathrm{V}_{\mathrm{CCB}}$ Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3-State with $\mathrm{V}_{\mathrm{CCB}}$ at GND
- Ultra-Small Packaging: $4.0 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ UDFN20
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Mobile Phones, PDAs, Other Portable Devices

Important Information

- ESD Protection for All Pins:

HBM (Human Body Model) >7000 V

Figure 1. Logic Diagram

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

UDFN2O
MARKING DIAGRAM
 MU SUFFIX CASE 517AK

LB = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping †
NLSV8T240MUTAG	UDFN20 (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN ASSIGNMENT

PIN	FUNCTION
$V_{\text {CCA }}$	Input Port DC Power Supply
$V_{C C B}$	Output Port DC Power Supply
GND	Ground
A_{n}	Input Port
B_{n}	Output Port
$\overline{O E}$	Output Enable

TRUTH TABLE

Inputs		Outputs
$\overline{\mathrm{OE}}$	A_{n}	B_{n}
L	L	H
L	H	L
H	X	$3-$ State

MAXIMUM RATINGS

Symbol	Rating	Value	Condition	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	DC Supply Voltage	-0.5 to +5.5		V
V_{1}	DC Input Voltage A_{n}	-0.5 to +5.5		V
V_{C}	Control Input $\overline{\mathrm{OE}}$	-0.5 to +5.5		V
V_{O}	DC Output Voltage \quad (Power Down) B_{n}	-0.5 to +5.5	$\mathrm{V}_{\text {CCA }}=\mathrm{V}_{\text {CCB }}=0$	V
	(Active Mode) B_{n}	-0.5 to +5.5		V
	(Tri-State Mode) B_{n}	-0.5 to +5.5		V
IIK	DC Input Diode Current	-20	$\mathrm{V}_{1}<$ GND	mA
lok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
10	DC Output Source/Sink Current	± 50		mA
$\mathrm{I}_{\mathrm{CCA}}, \mathrm{I}_{\text {CCB }}$	DC Supply Current Per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Positive DC Supply Voltage		0.9	4.5	V
V_{1}	Bus Input Voltage		GND	4.5	V
V_{C}	Control Input	$\overline{\mathrm{OE}}$	GND	4.5	V
V_{10}	Bus Output Voltage (Power Down Mode)	B_{n}	GND	4.5	V
	(Active Mode)	B_{n}	GND	$\mathrm{V}_{\text {CCB }}$	V
	(Tri-State Mode)	B_{n}	GND	4.5	V
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Rate V_{1}, from 30% to 70% of $V_{C C} ; V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		0	10	nS

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\text {CCA }}(\mathrm{V})$	$\mathrm{V}_{\text {ccB }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
					Min	Max	
V_{IH}	$\begin{aligned} & \text { Input HIGH Voltage } \\ & \text { (An, OE) } \end{aligned}$		3.6-4.5	0.9-4.5	2.2	-	V
			2.7-3.6		2.0	-	
			2.3-2.7		1.6	-	
			1.4-2.3		0.65 * $\mathrm{V}_{\text {CCA }}$	-	
			0.9-1.4		0.9 * $\mathrm{V}_{\text {CCA }}$	-	
VIL	Input LOW Voltage (An, DE)		3.6-4.5	0.9-4.5	-	0.8	V
			2.7-3.6		-	0.8	
			2.3-2.7		-	0.7	
			1.4-2.3		-	0.35 * $\mathrm{V}_{\text {CCA }}$	
			0.9-1.4		-	0.1 * $\mathrm{V}_{\text {CCA }}$	
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	0.9-4.5	0.9-4.5	$\mathrm{V}_{\text {CCB }}-0.2$	-	V
		$\mathrm{IOH}=-0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	0.9	0.9	0.75 * V CCB	-	
		$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	1.4	1.4	1.05	-	
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	1.65	1.65	1.25	-	
			2.3	2.3	2.0	-	
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	2.3	2.3	1.8	-	
			2.7	2.7	2.2	-	
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	2.3	2.3	1.7	-	
			3.0	3.0	2.4	-	
		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$	3.0	3.0	2.2	-	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	0.9-4.5	0.9-4.5	-	0.2	V
		$\mathrm{I}_{\text {OL }}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.1	1.1	-	0.3	
		$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.4	1.4	-	0.35	
		$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	1.65	1.65	-	0.3	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
		$\mathrm{I}_{\text {OL }}=18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	2.3	2.3	-	0.6	
			3.0	3.0	-	0.4	
		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$	3.0	3.0	-	0.55	
1	Input Leakage Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CCA }}$ or GND	0.9-4.5	0.9-4.5	-1.0	1.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	$\overline{\mathrm{OE}}=0 \mathrm{~V}$	$\frac{0}{0.9-4.5}$	$\begin{gathered} 0.9-4.5 \\ 0 \end{gathered}$	$\begin{aligned} & \hline-1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
ICCA	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND} ; \\ & \mathrm{IO}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCB }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or GND; } \\ & \mathrm{l}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	2.0	$\mu \mathrm{A}$
$I_{\text {CCA }}+I_{\text {CCB }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}} \text { or GND; } \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{~V}_{C C A}=\mathrm{V}_{\mathrm{CCB}} \end{aligned}$	0.9-4.5	0.9-4.5	-	4.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CCA }}$	Increase in ICC per Input Voltage, Other Inputs at $\mathrm{V}_{\mathrm{CCA}}$ or GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }} \text { or } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CCB }}$	Increase in ICC per Input Voltage, Other Inputs at $\mathrm{V}_{\mathrm{CCA}}$ or GND	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }} \text { or } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & \hline 10 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
Ioz	I/O Tri-State Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \overline{\mathrm{OE}}=0 \mathrm{~V}$	0.9-4.5	0.9-4.5	-1.0	1.0	$\mu \mathrm{A}$

TOTAL STATIC POWER CONSUMPTION (Icca $+\mathrm{I}_{\mathrm{CCB}}$)

$\mathrm{V}_{\text {CCA }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Unit
	$\mathrm{V}_{\text {ccB }}(\mathrm{V})$										
	4.5		3.3		2.8		1.8		0.9		
	Min	Max									
4.5		2		2		2		2		< 1.5	$\mu \mathrm{A}$
3.3		2		2		2		2		< 1.5	$\mu \mathrm{A}$
2.8		<2		<1		<1		< 0.5		< 0.5	$\mu \mathrm{A}$
1.8		<1		<1		< 0.5		< 0.5		< 0.5	$\mu \mathrm{A}$
0.9		< 0.5		< 0.5		< 0.5		< 0.5		< 0.5	$\mu \mathrm{A}$

NOTE: Connect ground before applying supply voltage $\mathrm{V}_{\text {CCA }}$ or $\mathrm{V}_{\mathrm{CCB}}$. This device is designed with the feature that the power-up sequence of $V_{C C A}$ and $V_{C C B}$ will not damage the IC.
AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Unit
			$\mathrm{V}_{\text {CCB }}(\mathrm{V})$										
			4.5		3.3		2.8		1.8		1.2		
			Min	Max									
$t_{\text {PLH }}$, $t_{\text {PHL }}$ (Note 1)	Propagation Delay,$A_{n} \text { to } B_{n}$	4.5		1.6		1.8		2.0		2.1		2.3	nS
		3.3		1.7		1.9		2.1		2.3		2.6	
		2.8		1.9		2.1		2.3		2.5		2.8	
		1.8		2.1		2.4		2.5		2.7		3.0	
		1.2		2.4		2.7		2.8		3.0		3.3	
$t_{\text {PZH }}$, $t_{\text {PZL }}$ (Note 1)	Output Enable, $\overline{O E}$ to B_{n}	4.5		2.6		3.8		4.0		4.1		4.3	$n S$
		3.3		3.7		3.9		4.1		4.3		4.6	
		2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
t_{PHZ}, $t_{\text {PLZ }}$ (Note 1)	Output Disable, $\overline{O E}$ to B_{n}	4.5		2.6		3.8		4.0		4.1		4.3	nS
		3.3		3.7		3.9		4.1		4.3		4.6	
		2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
$\mathrm{t}_{\mathrm{OSHL}}$, tosth (Note 1)	Output to Output Skew, Time	4.5		0.15		0.15		0.15		0.15		0.15	nS
		3.3		0.15		0.15		0.15		0.15		0.15	
		2.5		0.15		0.15		0.15		0.15		0.15	
		1.8		0.15		0.15		0.15		0.15		0.15	
		1.2		0.15		0.15		0.15		0.15		0.15	

1. Propagation delays defined per Figure 2.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	3.5	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I / O Pin Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA} / \mathrm{B}}$	5.0	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCA}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

2. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. $C_{P D}$ is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC} (operating) $\cong \mathrm{C}_{P D} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{N}_{S W}$ where $\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CCA}}+\mathrm{I}_{\mathrm{CCB}}$ and $\mathrm{N}_{\mathrm{SW}}=$ total number of outputs switching.

Figure 2. AC (Propagation Delay) Test Circuit

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	OPEN
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	$\mathrm{V}_{\mathrm{CCO}} \times 2$
$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\text {PZH }}$	GND
$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ or equivalent (includes probe and jig capacitance) $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ or equivalent $Z_{\text {OUT }}$ of pulse generator $=50 \Omega$	

Waveform 1 - Propagation Delays
$t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

Waveform 2 - Output Enable and Disable Times $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 3. AC (Propagation Delay) Test Circuit Waveforms

Symbol	$\mathbf{V}_{\mathbf{C C}}$				
	$\mathbf{3 . 0} \mathbf{V - 4 . 5} \mathbf{V}$	$\mathbf{2 . 3} \mathbf{V} \mathbf{- 2 . 7} \mathbf{V}$	$\mathbf{1 . 6 5} \mathbf{V} \mathbf{- 1 . 9 5} \mathbf{V}$	$\mathbf{1 . 4} \mathbf{V} \mathbf{- 1 . 6} \mathbf{V}$	$\mathbf{0 . 9} \mathbf{V - 1 . 3} \mathbf{V}$
	$\mathrm{V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$
$\mathrm{~V}_{\mathrm{mB}}$	$\mathrm{V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$	$\mathrm{~V}_{\mathrm{CCB}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$	$\mathrm{~V}_{\mathrm{OL}} \times 0.1$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$	$\mathrm{~V}_{\mathrm{OH}} \times 0.9$

UDFN20 4x2, 0.4P
CASE 517AK-01
ISSUE O
DATE 14 NOV 2006
SCALE 4:1

MOUNTING FOOTPRINT SOLDERMASK DEFINED

DOCUMENT NUMBER:	98AON23419D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN20 4 X 2, 0.4P		PAGE 1 OF 1

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

