NLSX5012

2-Bit $100 \mathrm{Mb} / \mathrm{s}$ Configurable Dual-Supply Level Translator

The NLSX5012 is a 2-bit configurable dual-supply autosensing bidirectional level translator that does not require a direction control pin. The $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}-$ and $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$-ports are designed to track two different power supply rails, V_{CC} and V_{L} respectively. Both the V_{CC} and the V_{L} supply rails are configurable from 0.9 V to 4.5 V . This allows a logic signal on the V_{L} side to be translated to either a higher or a lower logic signal voltage on the V_{CC} side, and vice-versa.

The NLSX5012 offers the feature that the values of the V_{CC} and V_{L} supplies are independent. Design flexibility is maximized because V_{L} can be set to a value either greater than or less than the V_{CC} supply. In contrast, the majority of competitive auto sense translators have a restriction that the value of the V_{L} supply must be equal to less than $\left(\mathrm{V}_{\mathrm{CC}}-0.4\right) \mathrm{V}$.

The NLSX5012 has high output current capability, which allows the translator to drive high capacitive loads such as most high frequency EMI filters. Another feature of the NLSX5012 is that each $\mathrm{I} / \mathrm{O}_{-} \mathrm{V}_{\mathrm{Ln}}$ and $\mathrm{I} / \mathrm{O}_{-} \mathrm{V}_{\mathrm{CCn}}$ channel can function as either an input or an output.

An Output Enable (EN) input is available to reduce the power consumption. The EN pin can be used to disable both I/O ports by putting them in 3-state which significantly reduces the supply current from both V_{CC} and V_{L}. The EN signal is referenced to the V_{L} supply.

Features

- Wide $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{L}}$ Operating Range: 0.9 V to 4.5 V
- V_{L} and V_{CC} are independent
- V_{L} may be greater than, equal to, or less than V_{CC}
- High 100 pF Capacitive Drive Capability
- High-Speed with $140 \mathrm{Mb} / \mathrm{s}$ Guaranteed Date Rate for $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{L}}>1.8 \mathrm{~V}$
- Low Bit-to-Bit Skew
- Overvoltage Tolerant Enable and I/O Pins
- Non-preferential Power-Up Sequencing
- Power-Off Protection
- Small packaging: UDFN8, SO-8, Micro8
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Mobile Phones, PDAs, Other Portable Devices

Important Information

- ESD Protection for All Pins:
- HBM (Human Body Model) > 8000 V

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Typical Application Circuit

Figure 3. Application Example for $\mathrm{V}_{\mathrm{L}}<\mathrm{V}_{\mathrm{Cc}}$

Figure 2. Simplified Functional Diagram (1 I/O Line)

Figure 4. Application Example for $\mathrm{V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{CC}}$

NLSX5012

Figure 5. Logic Diagram

Figure 6. Pin Assignments

PIN ASSIGNMENT

Pins	Description
V_{CC}	V_{CC} Input Voltage
V_{L}	V_{L} Input Voltage
GND	Ground
EN	Output Enable
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}} \mathrm{n}$	I / O Port, Referenced to V_{CC}
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$	I / O Port, Referenced to V_{L}

FUNCTION TABLE

EN	Operating Mode
L	$\mathrm{Hi}-Z$
H	I / O Buses Connected

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V_{CC}	High-side DC Supply Voltage	-0.5 to +5.5		V
$\mathrm{~V}_{\mathrm{L}}$	Low-side DC Supply Voltage	-0.5 to +5.5		V
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$	V_{CC}-Referenced DC Input/Output Voltage	-0.5 to +5.5		V
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$	V_{L}-Referenced DC Input/Output Voltage	-0.5 to +5.5		V
$\mathrm{~V}_{\mathrm{I}}$	Enable Control Pin DC Input Voltage	-0.5 to +5.5		V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{l}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
I_{CC}	DC Supply Current Through V_{CC}	± 100		mA
I_{L}	DC Supply Current Through V_{L}	± 100		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current Through Ground Pin	± 100		mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	High-side Positive DC Supply Voltage	0.9	4.5	V
$\mathrm{~V}_{\mathrm{L}}$	Low-side Positive DC Supply Voltage	0.9	4.5	V
$\mathrm{~V}_{\mathrm{I}}$	Enable Control Pin Voltage	$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$		
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$				

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions (Note 1)	$\begin{aligned} & \mathbf{V C C D}_{\mathbf{c c}}(\mathbf{V}) \\ & \text { (Note 2) } \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathbf{L}}(\mathbf{V}) \\ & (\text { Note 3) } \end{aligned}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
					Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 4) } \end{array}$	Max	Min	Max	
$\mathrm{V}_{\text {IHC }}$	I/O V ${ }_{\text {CC }}$ Input HIGH Voltage		0.9-4.5	0.9-4.5	$\begin{aligned} & \hline 2 / 3^{*} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	-	$\begin{aligned} & 2 / 3 \text { * } \\ & V_{C C} \end{aligned}$	-	V
$\mathrm{V}_{\text {ILC }}$	I/O V CC Input LOW Voltage		0.9-4.5	0.9-4.5	-	-	$\begin{aligned} & \hline 1 / 3 * \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	$\begin{aligned} & 1 / 3^{*} \\ & V_{\mathrm{CC}} \end{aligned}$	V
$\mathrm{V}_{\mathrm{IHL}}$	I/O V ${ }_{\text {L }}$ Input HIGH Voltage		0.9-4.5	0.9-4.5	$\begin{gathered} 2 / 3^{*} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$	-	-	$2 / 3 * V_{L}$	-	V
$\mathrm{V}_{\text {ILL }}$	I/O V ${ }_{\text {L }}$ Input LOW Voltage		0.9-4.5	0.9-4.5	-	-	$\begin{gathered} 1 / 3^{*} \\ V_{\mathrm{L}} \end{gathered}$	-	$1 / 3$ * V_{L}	V
V_{IH}	Control Pin Input HIGH Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.9-4.5	0.9-4.5	$\begin{gathered} 2 / 3^{*} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$	-	-	$2 / 3 * V_{L}$	-	V
V_{IL}	Control Pin Input LOW Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.9-4.5	0.9-4.5	-	-	$\begin{gathered} \hline 1 / 3^{*} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$	-	$1 / 3 * V_{L}$	V
$\mathrm{V}_{\mathrm{OHC}}$	I/O V ${ }_{C C}$ Output HIGH Voltage	I/O V ${ }_{C C}$ source current $=20 \mu \mathrm{~A}$	0.9-4.5	0.9-4.5	$\begin{aligned} & 0.9 \text { * } \\ & \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	-	$\begin{aligned} & 0.9 * \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	V
$\mathrm{V}_{\text {OLC }}$	I/O V ${ }_{\text {CC }}$ Output LOW Voltage	$\begin{gathered} \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}} \operatorname{sink} \\ \text { current }=20 \mu \mathrm{~A} \end{gathered}$	0.9-4.5	0.9-4.5	-	-	0.2	-	0.2	V
$\mathrm{V}_{\mathrm{OHL}}$	I/O V ${ }_{\text {L Output HIGH Voltage }}$	I/O V ${ }_{\mathrm{L}}$ source current $=20 \mu \mathrm{~A}$	0.9-4.5	0.9-4.5	$\begin{gathered} 0.9^{*} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$	-	-	0.9 * V	-	V
$\mathrm{V}_{\text {OLL }}$	I/O V L Output LOW Voltage	$\begin{aligned} & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{L}} \text { sink current } \\ & =20 \mu \mathrm{~A} \end{aligned}$	0.9-4.5	0.9-4.5	-	-	0.2	-	0.2	V
$\mathrm{I}_{\text {QVCC }}$	V ${ }_{\text {CC }}$ Supply Current	$\begin{gathered} \mathrm{EN}=\mathrm{V}_{\mathrm{L}}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}, \\ \left(\mathrm{l} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right. \text { or } \\ \left.\mathrm{V}_{\mathrm{CC}}, \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{L}}=\text { float }\right) \\ \text { or } \end{gathered}$	0.9-4.5	0.9-4.5	-	-	1	-	2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {QVL }}$	V ${ }_{\text {L }}$ Supply Current	(I/O $\mathrm{V}_{\mathrm{CC}}=$ float, I / O $\left.\mathrm{V}_{\mathrm{L}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}\right)$	0.9-4.5	0.9-4.5	-	-	1	-	2.5	$\mu \mathrm{A}$
ITS-vCC	V_{CC} Tristate Output Mode Supply Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{EN}=0 \mathrm{~V} \\ (1 / \mathrm{V} \mathrm{VC}=0 \mathrm{~V} \text { or } \end{gathered}$	0.9-4.5	0.9-4.5	-	-	0.5	-	1.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TS-VL }}$	$V_{\text {L }}$ Tristate Output Mode Supply Current	$\text { (I/O V } \mathrm{CCC}=\text { float, I/O }$ $V_{L}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}$	0.9-4.5	0.9-4.5	-	-	0.5	-	1.5	$\mu \mathrm{A}$
l OZ	I/O Tristate Output Mode Leakage Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{EN}=0 \mathrm{~V} \end{gathered}$	0.9-4.5	0.9-4.5	-	-	± 1	-	± 1.5	$\mu \mathrm{A}$
1	Control Pin Input Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.9-4.5	0.9-4.5	-	-	± 1	-	± 1	$\mu \mathrm{A}$
IoFF	Power Off Leakage Current	$\begin{aligned} & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}=0 \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{L}}=0 \text { to } 4.5 \mathrm{~V} \end{aligned}$	0	0	-	-	1	-	1.5	$\mu \mathrm{A}$
			0.9-4.5	0	-	-	1	-	1.5	
			0	0.9-4.5	-	-	1	-	1.5	

1. Normal test conditions are $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}} \leq 15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{IOVL}} \leq 15 \mathrm{pF}$, unless otherwise specified.
2. V_{CC} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ port, and V_{CC} ranges from +0.9 V to 4.5 V under normal operating conditions.
3. V_{L} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ port, and V_{L} ranges from +0.9 V to 4.5 V under normal operating conditions.
4. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

TIMING CHARACTERISTICS

Symbol	Parameter	Test Conditions (Note 5)	$\begin{aligned} & \mathbf{V C c}_{\text {ch }}(\mathbf{V}) \\ & (\text { Note }) \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathbf{L}}(\mathbf{V}) \\ & (\text { Note 7) } \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Unit
					Min	Typ (Note 8)	Max	
$\mathrm{t}_{\mathrm{R}-\mathrm{vcc}}$	I/O V CC Rise Time	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	0.9-4.5	0.9-4.5	-	-	8.5	nS
			1.8-4.5	1.8-4.5	-	-	3.5	
$\mathrm{t}_{\text {F-VCC }}$	I/O V CC Fall Time	$\mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF}$	0.9-4.5	0.9-4.5	-	-	8.5	nS
			1.8-4.5	1.8-4.5	-	-	3.5	
$\mathrm{t}_{\mathrm{R}-\mathrm{VL}}$	I/O V L Rise Time	$\mathrm{ClOVL}^{\text {a }} 15 \mathrm{pF}$	0.9-4.5	0.9-4.5	-	-	8.5	nS
			1.8-4.5	1.8-4.5	-	-	3.5	
$\mathrm{t}_{\text {F-VL }}$	I/O V L Fall Time	$\mathrm{ClOVL}_{\text {I }}=15 \mathrm{pF}$	0.9-4.5	0.9-4.5	-	-	8.5	nS
			1.8-4.5	1.8-4.5	-	-	3.5	
$\mathrm{Z}_{\text {Ovcc }}$	I/O V CC One-Shot Output Impedance	(Note 9)	$\begin{aligned} & 0.9 \\ & 1.8 \\ & 4.5 \end{aligned}$	0.9-4.5	-	$\begin{aligned} & 37 \\ & 20 \\ & 6.0 \end{aligned}$	-	Ω
$\mathrm{Z}_{\text {OVL }}$	I/O VL One-Shot Output Impedance	(Note 9)	$\begin{aligned} & 0.9 \\ & 1.8 \\ & 4.5 \end{aligned}$	0.9-4.5	-	$\begin{aligned} & 37 \\ & 20 \\ & 6.0 \end{aligned}$	-	Ω
tPD_VL-VCC	Propagation Delay (Driving I/O V CC)	$\mathrm{ClOVCC}^{\text {a }}$ 15 pF	0.9-4.5	0.9-4.5	-	-	35	nS
			1.8-4.5	1.8-4.5	-	-	10	
		$\mathrm{Cl}_{\text {IOVCC }}=30 \mathrm{pF}$	0.9-4.5	0.9-4.5	-	-	35	
			1.8-4.5	1.8-4.5	-	-	10	
		$\mathrm{Cl}_{\text {IOVCC }}=50 \mathrm{pF}$	1.0-4.5	1.0-4.5	-	-	37	
			1.8-4.5	1.8-4.5	-	-	11	
		$\mathrm{ClOVCC}^{\text {a }}$ = 100 pF	1.2-4.5	1.2-4.5	-	-	40	
			1.8-4.5	1.8-4.5	-	-	13	
tpd_VCC-VL $^{\text {d }}$	Propagation Delay (Driving I/O V L)	$\mathrm{ClOVL}^{\text {a }}$ = 15 pF	0.9-4.5	0.9-4.5	-	-	35	nS
			1.8-4.5	1.8-4.5	-	-	10	
		$\mathrm{ClOVL}^{\text {I }} 30 \mathrm{pF}$	0.9-4.5	0.9-4.5	-	-	35	
			1.8-4.5	1.8-4.5	-	-	10	
		$\mathrm{CloVL}^{\text {a }}$ = 50 pF	1.0-4.5	1.0-4.5	-	-	37	
			1.8-4.5	1.8-4.5	-	-	11	
		$\mathrm{C}_{\text {IOVL }}=100 \mathrm{pF}$	1.2-4.5	1.2-4.5	-	-	40	
			1.8-4.5	1.8-4.5	-	-	13	
$\mathrm{t}_{\text {SK }}$	Channel-to-Channel Skew	$\begin{gathered} \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF}, \mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF} \\ (\text { Note } 9) \end{gathered}$	0.9-4.5	0.9-4.5	-	-	0.15	nS
İ_PEEAK	Input Driver Maximum Peak Current	$I / O_{-} V_{C C}=1 \mathrm{MHz}=\begin{gathered}E N \text { Square Wave, }\end{gathered}$ Amplitude $=\mathrm{V}_{\mathrm{CC}}$, or $\mathrm{I} / \mathrm{O}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}=1 \mathrm{MHz}$ Square Wave, Amplitude $=\mathrm{V}_{\mathrm{L}}$ (Note 9)	0.9-4.5	0.9-4.5	-	-	5.0	mA

5. Normal test conditions are $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}} \leq 15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{IOVL}} \leq 15 \mathrm{pF}$, unless otherwise specified.
6. V_{CC} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ port, and V_{CC} ranges from +0.9 V to 4.5 V under normal operating conditions.
7. V_{L} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ port, and V_{L} ranges from +0.9 V to 4.5 V under normal operating conditions.
8. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
9. Guaranteed by design.

TIMING CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions (Note 10)	$\begin{aligned} & \mathbf{V}_{\mathbf{C C}}(\mathbf{V}) \\ & (\text { Note 11) } \end{aligned}$	$V_{L}(V)$ (Note 12)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Unit
					Min	Typ (Note 13)	Max	
$\mathrm{t}_{\text {EN-VCC }}$	I/O_V ${ }_{C C}$ Output Enable Time $t_{\text {PzH }}$$t_{\text {PZL }}$	$\begin{gathered} \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF} \\ \mathrm{I}_{2} / \mathrm{O}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}} \end{gathered}$	0.9-4.5	0.9-4.5	-	-	160	nS
		$\begin{gathered} \mathrm{C}_{\text {IOVCC }}=15 \mathrm{pF} \\ \mathrm{I} / \mathrm{O}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \end{gathered}$	0.9-4.5	0.9-4.5	-	-	130	
$\mathrm{t}_{\text {EN-VL }}$	I/O_VL Output Enable Time tpzH	$\mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}$, I/O_VCC $=V_{C C}$	0.9-4.5	0.9-4.5	-	-	160	nS
		$\begin{aligned} & \mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}, \\ & \mathrm{I} / \mathrm{O}_{-} \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	0.9-4.5	0.9-4.5	-	-	130	
t ${ }_{\text {DIS-VCC }}$	I/O_V ${ }_{C C}$ Output Disable Time $t_{\text {PHZ }}$$t_{\text {PLZ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF} \\ \mathrm{I} / \mathrm{O}_{-} \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}} \end{gathered}$	0.9-4.5	0.9-4.5	-	-	210	nS
		$\begin{gathered} \mathrm{C}_{\mathrm{IOVCC}}=15 \mathrm{pF} \\ \mathrm{I} / \mathrm{O}_{\mathrm{L}}=0 \mathrm{~V} \end{gathered}$	0.9-4.5	0.9-4.5	-	-	175	
$\mathrm{t}_{\text {DIS-VL }}$	I/O_VL Output Disable Time $t_{\text {PHZ }}$$t_{p L Z}$	$\mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}$, I/O_V $V_{C C}=V_{C C}$	0.9-4.5	0.9-4.5	-	-	210	nS
		$\begin{aligned} & \mathrm{C}_{\mathrm{IOVL}}=15 \mathrm{pF}, \\ & \mathrm{I} / \mathrm{O}_{-} \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	0.9-4.5	0.9-4.5	-	-	175	
MDR	Maximum Data Rate	$\mathrm{C}_{\mathrm{IO}}=15 \mathrm{pF}$	0.9-4.5	0.9-4.5	50	-	-	mbps
			1.8-4.5	1.8-4.5	140	-	-	
		$\mathrm{C}_{1 \mathrm{O}}=30 \mathrm{pF}$	0.9-4.5	0.9-4.5	40	-	-	
			1.8-4.5	1.8-4.5	120	-	-	
		$\mathrm{C}_{1 \mathrm{O}}=50 \mathrm{pF}$	1.0-4.5	1.0-4.5	30	-	-	
			1.8-4.5	1.8-4.5	100	-	-	
		$\mathrm{C}_{10}=100 \mathrm{pF}$	1.2-4.5	1.2-4.5	20	-	-	
			1.8-4.5	1.8-4.5	60	-	-	

10. Normal test conditions are $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IOVCC}} \leq 15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{IOVL}} \leq 15 \mathrm{pF}$, unless otherwise specified.
11. V_{CC} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ port, and V_{CC} ranges from +0.9 V to 4.5 V under normal operating conditions.
12. V_{L} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ port, and V_{L} ranges from +0.9 V to 4.5 V under normal operating conditions.
13. Typical values are for $\mathrm{V}_{\mathrm{CC}}=+2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

DYNAMIC POWER CONSUMPTION $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ (Note 14)	$\mathrm{V}_{\mathrm{L}}(\mathrm{V})$ (Note 15)	Typ (Note 16)	Unit
$\mathrm{CPD}_{\text {_VL }}$	$\mathrm{V}_{\mathrm{L}}=$ Input port, $\mathrm{V}_{\mathrm{CC}}=$ Output Port	$\begin{aligned} & \mathrm{C}_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{V}_{\mathrm{L}} \text { (outputs enabled) } \end{aligned}$	0.9	4.5	39	pF
			1.5	1.8	20	
			1.8	1.5	17	
			1.8	1.8	14	
			1.8	2.8	13	
			2.5	2.5	14	
			2.8	1.8	13	
			4.5	0.9	19	
	$\mathrm{V}_{\mathrm{CC}}=$ Input port, $\mathrm{V}_{\mathrm{L}}=$ Output Port	$\begin{aligned} & C_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{V}_{\mathrm{L}} \text { (outputs enabled) } \end{aligned}$	0.9	4.5	37	pF
			1.5	1.8	30	
			1.8	1.5	29	
			1.8	1.8	29	
			1.8	2.8	29	
			2.5	2.5	30	
			2.8	1.8	29	
			4.5	0.9	19	
CPD_VCC	$\mathrm{V}_{\mathrm{L}}=$ Input port, $\mathrm{V}_{\mathrm{CC}}=$ Output Port	$\begin{aligned} & \mathrm{C}_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{V}_{\mathrm{L}} \text { (outputs enabled) } \end{aligned}$	0.9	4.5	29	pF
			1.5	1.8	29	
			1.8	1.5	29	
			1.8	1.8	29	
			1.8	2.8	29	
			2.5	2.5	30	
			2.8	1.8	29	
			4.5	0.9	35	
	$\mathrm{V}_{\mathrm{CC}}=$ Input port, $\mathrm{V}_{\mathrm{L}}=$ Output Port	$\begin{aligned} & \mathrm{C}_{\mathrm{Load}}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{V}_{\mathrm{L}} \text { (outputs enabled) } \end{aligned}$	0.9	4.5	21	pF
			1.5	1.8	18	
			1.8	1.5	18	
			1.8	1.8	14	
			1.8	2.8	13	
			2.5	2.5	14	
			2.8	1.8	13	
			4.5	0.9	30	

14. V_{cc} is the supply voltage associated with the $I / \mathrm{O} \mathrm{VCC}$ port, and VCc ranges from +0.9 V to 4.5 V under normal operating conditions.
15. V_{L} is the supply voltage associated with the I/O VL port, and VL ranges from +0.9 V to 4.5 V under normal operating conditions.
16. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
17. $\mathrm{C}_{\text {PD VL }}$ and CPD VCC $^{\text {are defined as the value of the IC's equivalent capacitance from which the operating current can be calculated for the }}$ V_{L} and V_{CC} power supplies, respectively. $\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}}$ (dynamic) $+\mathrm{I}_{\mathrm{CC}}($ static $) \approx \mathrm{I}_{\mathrm{CC}}$ (operating) $\approx \mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{N}_{S W}$ where $\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}} \mathrm{VCC}$ $+I_{\mathrm{CC}}$ VL and $\mathrm{N}_{\mathrm{SW}}=$ total number of outputs switching.

STATIC POWER CONSUMPTION $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$ (Note 18)	$\mathrm{V}_{\mathrm{L}}(\mathrm{V})$ (Note 19)	Typ (Note 20)	Unit
CPD_VL	$\mathrm{V}_{\mathrm{L}}=$ Input port, $V_{C C}=$ Output Port	$\begin{aligned} & C_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{GND} \text { (outputs disabled) } \end{aligned}$	0.9	4.5	0.01	pF
			1.5	1.8	0.01	
			1.8	1.5	0.01	
			1.8	1.8	0.01	
			1.8	2.8	0.01	
			2.5	2.5	0.01	
			2.8	1.8	0.01	
			4.5	0.9	0.01	
	$\mathrm{V}_{\mathrm{CC}}=$ Input port, $\mathrm{V}_{\mathrm{L}}=$ Output Port	$\begin{aligned} & C_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{GND} \text { (outputs disabled) } \end{aligned}$	0.9	4.5	0.01	pF
			1.5	1.8	0.01	
			1.8	1.5	0.01	
			1.8	1.8	0.01	
			1.8	2.8	0.01	
			2.5	2.5	0.01	
			2.8	1.8	0.01	
			4.5	0.9	0.01	
CPD_Vcc	$\mathrm{V}_{\mathrm{L}}=$ Input port, $V_{C C}=$ Output Port	$\begin{aligned} & C_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{GND} \text { (outputs disabled) } \end{aligned}$	0.9	4.5	0.01	pF
			1.5	1.8	0.01	
			1.8	1.5	0.01	
			1.8	1.8	0.01	
			1.8	2.8	0.01	
			2.5	2.5	0.01	
			2.8	1.8	0.01	
			4.5	0.9	0.01	
	$\mathrm{V}_{\mathrm{CC}}=$ Input port, $\mathrm{V}_{\mathrm{L}}=$ Output Port	$\begin{aligned} & \mathrm{C}_{\text {Load }}=0, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{EN}=\mathrm{GND} \text { (outputs disabled) } \end{aligned}$	0.9	4.5	0.01	pF
			1.5	1.8	0.01	
			1.8	1.5	0.01	
			1.8	1.8	0.01	
			1.8	2.8	0.01	
			2.5	2.5	0.01	
			2.8	1.8	0.01	
			4.5	0.9	0.01	

18. V_{CC} is the supply voltage associated with the $\mathrm{I} / \mathrm{O} \mathrm{Vcc}$ port, and Vcc ranges from +0.9 V to 4.5 V under normal operating conditions.
19. V_{L} is the supply voltage associated with the I/O VL port, and VL ranges from +0.9 V to 4.5 V under normal operating conditions.
20. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

NLSX5012

Test	Switch
t $_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	Open
tPZL $\mathrm{t}_{\text {PLZ }}$	$2 \times \mathrm{V}_{\mathrm{CC}}$

$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}=50 \mathrm{k} \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 9. Test Circuit for Enable/Disable Time Measurement

Figure 10. Timing Definitions for Propagation Delays and Enable/Disable Measurement

IMPORTANT APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX5012 auto-sense translator provides bi-directional logic voltage level shifting to transfer data in multiple supply voltage systems. These level translators have two supply voltages, V_{L} and V_{CC}, which set the logic levels on the input and output sides of the translator. When used to transfer data from the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ to the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ ports, input signals referenced to the V_{L} supply are translated to output signals with a logic level matched to V_{CC}. In a similar manner, the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ to $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_{L}.

The NLSX5012 translator consists of bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. One-shot circuits are used to detect the rising or falling input signals. In addition, the one-shots decrease the rise and fall times of the output signal for high-to-low and low-to-high transitions.

Input Driver Requirements

Auto-sense translators such as the NLSX5012 have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi-directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent in the opposite direction. For proper operation, the input driver to the auto-sense translator should be capable of driving 2 mA of peak output current. The bi-directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage.

Enable Input (EN)

The NLSX5012 translator has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}$ and I / O
V_{L} pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_{L} supply and has Over-Voltage Tolerant (OVT) protection.

Uni-Directional versus Bi-Directional Translation

The NLSX5012 translator can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB.

Power Supply Guidelines

The values of the V_{L} and V_{CC} supplies can be set to anywhere between 0.9 and 4.5 V . Design flexibility is maximized because V_{L} may be either greater than or less than the V_{CC} supply. In contrast, the majority of the competitive auto sense translators has a restriction that the value of the V_{L} supply must be equal to less than ($\mathrm{V}_{\mathrm{CC}}-$ $0.4) \mathrm{V}$.
The sequencing of the power supplies will not damage the device during power-up operation. In addition, the I/O V_{CC} and $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ pins are in the high impedance state if either supply voltage is equal to 0 V . For optimal performance, 0.01 to $0.1 \mu \mathrm{~F}$ decoupling capacitors should be used on the V_{L} and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.
The NLSX5012 translators have a power down feature that provides design flexibility. The output ports are disabled when either power supply is off $\left(\mathrm{V}_{\mathrm{L}}\right.$ or $\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$. This feature causes all of the I/O pins to be in the power saving high impedance state.

UDFN8 1.8x1.2, 0.4P CASE 517AJ-01

ISSUE O
DATE 08 NOV 2006
SCALE 4:1

MOUNTING FOOTPRINT

SOLDERMASK DEFINED

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
4. MOLD FLASH ALOWED ON TERMINAL
5. ALONG EDGE OF PACKAGE. FLASH MAY ALONG EDCED O.O3 ONTO BOTTOM NOT EXCEED 0.03 ONTO B
6. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	REF
b	0.15	
	0.25	
b2	0.30 REF	
D	1.80 BSC	
E	1.20 BSC	
e	0.40 BSC	
L	0.45	0.55
L1	0.00	0.03
L2	0.40 REF	

GENERIC MARKING DIAGRAM*

XXM						

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON23417D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8 1.8X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN.
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MDLD FLASH, PRDTRUSIUNS, $\square R ~ G A T E ~ B U R R S ~$ SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRITRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE Tロ THE LIWEST PDINT UN THE PACKAGE BGDY.

END VIEW

0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	---	---	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	5.05
L	0.40	0.55	0.70

XXXX = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

- $\quad=\mathrm{Pb}-$ Free Package

STYLE 1:	STYLE 2.	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. SOURCE	2. GATE 1	2. N-GATE
3. SOURCE	3. SOURCE 2	3. P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
5. DRAIN	5. DRAIN 2	5. P-DRAIN
6. DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking
8. DRAIN
2. GATE 1 3. SOURCE 2
4. GATE 2 5. DRAIN 2 7. DRAIN 2 8. DRAIN 1

PIN 1. N-SOURCE 2. N-GATE . P-SOURCE
4. P-GATE
5. P-DRAIN
6. P-DRAIN
8. N-DRAIN

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF $\mathbf{1}$ |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ500RL7

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

