ON Semiconductor

Is Now

# onsemi 

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
## NLU1GT50

## Single Buffer, Non-Inverting, TTL Level

## TTL-Compatible Inputs

The NLU1GT50 MiniGate ${ }^{\text {TM }}$ is an advanced CMOS high-speed non-inverting buffer in ultra-small footprint.

The device input is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing.

The NLU1GT50 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

## Features

- Designed for 1.65 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- High Speed: $t_{\text {PD }}=3.5 \mathrm{~ns}(\mathrm{Typ}) @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- TTL-Compatible Input: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- CMOS-Compatible Output:
$\mathrm{V}_{\mathrm{OH}}>0.8 \mathrm{~V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{Load}$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Ultra-Small Packages
- These are $\mathrm{Pb}-$ Free Devices


Figure 1. Pinout (Top View)


Figure 2. Logic Symbol
PIN ASSIGNMENT

| 1 | NC |
| :---: | :---: |
| 2 | IN A |
| 3 | GND |
| 4 | OUT Y |
| 5 | NC |
| 6 | $\mathrm{~V}_{\mathrm{CC}}$ |



ON Semiconductor ${ }^{\text {® }}$ www.onsemi.com


ORDERING INFORMATION
See detailed ordering and shipping information on page 4 of this data sheet.

MAXIMUM RATINGS

| Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | DC Supply Voltage | -0.5 to +7.0 | V |
| $\mathrm{V}_{\text {IN }}$ | DC Input Voltage | -0.5 to +7.0 | V |
| $\mathrm{V}_{\text {OUT }}$ | DC Output Voltage | -0.5 to +7.0 | V |
| $\mathrm{IIK}^{\prime}$ | DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<$ GND | -20 | mA |
| lok | DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<$ GND | $\pm 20$ | mA |
| 10 | DC Output Source/Sink Current | $\pm 12.5$ | mA |
| Icc | DC Supply Current Per Supply Pin | $\pm 25$ | mA |
| $\mathrm{I}_{\text {GND }}$ | DC Ground Current per Ground Pin | $\pm 25$ | mA |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature Range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature, 1 mm from Case for 10 Seconds | 260 | ${ }^{\circ} \mathrm{C}$ |
| TJ | Junction Temperature Under Bias | 150 | ${ }^{\circ} \mathrm{C}$ |
| MSL | Moisture Sensitivity | Level 1 |  |
| $\mathrm{F}_{\mathrm{R}}$ | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |  |
| $\mathrm{V}_{\text {ESD }}$ | ESD Withstand Voltage <br> Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) | $\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$ | V |
| liATCHUP1 | Latchup Performance Above $\mathrm{V}_{\mathrm{CC}}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 5) | $\pm 500$ | mA |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA / JESD22-A114-A.
3. Tested to EIA / JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA / JESD78.

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Min | Max | Unit |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage | 1.65 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{IN}}$ | Digital Input Voltage | 0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{OUT}}$ | Output Voltage | 0 | 5.5 | V |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating Free-Air Temperature | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | Input Transition Rise or Fall Rate |  | 0 | 100 |
|  |  | V <br> CCC |  |  |
|  | $\mathrm{V}_{\mathrm{CC}}=5.3 \mathrm{~V} \pm \pm 0.3 \mathrm{~V} \pm 0.5 \mathrm{~V}$ | 0 | 20 |  |

DC ELECTRICAL CHARACTERISTICS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} \& \multirow[b]{2}{*}{Parameter} \& \multirow[b]{2}{*}{Conditions} \& \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{cc}}(\mathrm{V})\)} \& \multicolumn{3}{|c|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} \& \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\)} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\mathrm{T}_{\mathrm{A}} \& =-55^{\circ} \mathrm{C} \text { to } \\
\& +125^{\circ} \mathrm{C}
\end{aligned}
\]} \& \multirow[b]{2}{*}{Unit} \\
\hline \& \& \& \& Min \& Typ \& Max \& Min \& Max \& Min \& Max \& \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) \& Low-Level Input Voltage \& \& \[
\begin{gathered}
1.65 \text { to } \\
2.29 \\
2.3 \text { to } 2.99 \\
3.0 \\
4.5 \text { to } 5.5
\end{gathered}
\] \& \[
\begin{gathered}
0.50 \mathrm{x} \\
\mathrm{~V}_{\mathrm{CC}} \\
0.45 \mathrm{x} \\
\mathrm{~V}_{\mathrm{CC}} \\
1.4 \\
2.0
\end{gathered}
\] \& \& \& \[
\begin{gathered}
0.50 x \\
V_{C C} \\
0.45 x \\
V_{C C} \\
1.4 \\
2.0
\end{gathered}
\] \& \& \& \& V \\
\hline \(\mathrm{V}_{\text {IL }}\) \& Low-Level Input Voltage \& \& \[
\begin{gathered}
\hline 1.65 \text { to } \\
2.29 \\
2.3 \text { to } 2.99 \\
3.0 \\
4.5 \text { to } 5.5
\end{gathered}
\] \& \& \& \[
\begin{gathered}
\hline 0.10 \mathrm{x} \\
\mathrm{~V}_{\mathrm{CC}} \\
0.15 \mathrm{x} \\
\mathrm{~V}_{\mathrm{CC}} \\
0.53 \\
0.8
\end{gathered}
\] \& \& \[
\begin{gathered}
\hline 0.10 x \\
\mathrm{~V}_{\mathrm{CC}} \\
0.15 \mathrm{x} \\
\mathrm{~V}_{\mathrm{CC}} \\
0.53 \\
0.8
\end{gathered}
\] \& \& \[
\begin{gathered}
0.10 x \\
V_{C C} \\
0.15 x \\
V_{C C} \\
0.53 \\
0.8
\end{gathered}
\] \& V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) \& High-Level Output Voltage \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\
\& \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\
\& \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\
\& \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}
\end{aligned}
\] \& \begin{tabular}{c}
1.65 to \\
2.99 \\
3.0 \\
4.5 \\
\\
\hline 3.0 \\
4.5
\end{tabular} \& \begin{tabular}{c}
\(\mathrm{V}_{\mathrm{CC}}-\) \\
0.1 \\
2.9 \\
\\
4.4 \\
\hline \\
2.58 \\
3.94
\end{tabular} \& \[
\begin{aligned}
\& 3.0 \\
\& 4.5
\end{aligned}
\] \& \& \begin{tabular}{c} 
\\
\hline \(\mathrm{V}_{\mathrm{CC}}-\) \\
0.1 \\
\\
2.9 \\
\\
4.4 \\
\\
\\
\\
2.48 \\
3.80
\end{tabular} \& \& \(\mathrm{V}_{\mathrm{CC}}-\)
0.1
2.9
4.4

2.34
3.66 \& \& V <br>

\hline $\mathrm{V}_{\text {OL }}$ \& Low-Level Output Voltage \& $$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{IOL}_{\mathrm{OL}}=50 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}
\end{aligned}
$$ \& 1.65 to

2.99
3.0
4.5

3.0

4.5 \& \& | $0$ |
| :--- |
| 0 $0$ | \& \[

$$
\begin{aligned}
& \hline 0.1 \\
& 0.1 \\
& 0.1 \\
& \hline \\
& \hline 0.36 \\
& 0.36
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \hline 0.1 \\
& 0.1 \\
& 0.1 \\
& \hline \\
& 0.44 \\
& 0.44
\end{aligned}
$$

\] \& \& | 0.1 |
| :--- |
| 0.1 |
| 0.1 |
| 0.52 |
| 0.52 | \& V <br>

\hline In \& Input Leakage Current \& $0=\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$ \& 0 to 5.5 \& \& \& $\pm 0.1$ \& \& $\pm 1.0$ \& \& $\pm 1.0$ \& $\mu \mathrm{A}$ <br>

\hline $I_{\text {cc }}$ \& Quiescent Supply Current \& $$
\begin{aligned}
& \mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V} \text { or } \\
& G N D
\end{aligned}
$$ \& 5.5 \& \& \& 1.0 \& \& 20 \& \& 40 \& $\mu \mathrm{A}$ <br>

\hline $\mathrm{I}_{\text {CCT }}$ \& Quiescent Supply Current \& $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ \& 5.5 \& \& \& 1.35 \& \& 1.50 \& \& 1.65 \& mA <br>
\hline IOPD \& Output Leakage Current \& $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ \& 0.0 \& \& \& 0.5 \& \& 5.0 \& \& 10 \& $\mu \mathrm{A}$ <br>
\hline
\end{tabular}

## NLU1GT50

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{n}$ )

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | Test Condition | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\begin{aligned} & \hline \mathrm{t}_{\text {PLH, }} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay, Input A to Output Y | 1.65 to 1.95 | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  | 16.6 |  | 18.0 |  | 22.0 | ns |
|  |  | 2.3 to 2.7 | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  |  | 13.3 |  | 14.5 |  | 17.5 |  |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  | 19.5 |  | 22.0 |  | 25.5 |  |
|  |  | 3.0 to 3.6 | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 4.5 | 10.0 |  | 11.0 |  | 13.0 |  |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 6.3 | 13.5 |  | 15.0 |  | 17.5 |  |
|  |  | 4.5 to 5.5 | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 3.5 | 6.7 |  | 7.5 |  | 8.5 |  |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 4.3 | 7.7 |  | 8.5 |  | 9.5 |  |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  |  |  | 5 | 10 |  | 10 |  | 10.0 | pF |
| CPD | Power Dissipation Capacitance (Note 6) | 5.0 |  |  | 12 |  |  |  |  |  | pF |

6. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} . \mathrm{C}_{\mathrm{PD}}$ is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.


Figure 3. Switching Waveforms

*Includes all probe and jig capacitance

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :---: | :---: |
| NLU1GT50MUTCG | UDFN6, $1.2 \times 1.0,0.4 \mathrm{P}$ <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| NLU1GT50AMX1TCG | ULLGA6, $1.45 \times 1.0,0.5 \mathrm{P}$ <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| NLU1GT50CMX1TCG | ULLGA6, $1.0 \times 1.0,0.35 \mathrm{P}$ <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| NLU1GT50AMUTCG | UDFN6, $1.45 \times 1.0,0.5 P$ <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| NLU1GT50CMUTCG | UDFN6, $1.0 \times 1.0,0.35 P$ <br> (Pb-Free) | $3000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## NLU1GT50

## PACKAGE DIMENSIONS

## UDFN6 1.45x1.0, 0.5P

CASE 517AQ
ISSUE O


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
0.30 mm FROM THE TERMINAL TIP.

|  | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: |
| DIM | MIN | MAX |  |
| A | 0.45 | 0.55 |  |
| A1 | 0.00 | 0.05 |  |
| A2 | 0.07 |  |  |
| REF | 0.20 |  |  |
| D | 0.30 |  |  |
| D | 1.45 BSC |  |  |
| E | 1.00 |  |  |
| BSC |  |  |  |
| L | 0.50 |  |  |

DETAIL B OPTIONAL CONSTRUCTIONS

## MOUNTING FOOTPRINT


*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## NLU1GT50

## PACKAGE DIMENSIONS

UDFN6 1.0x1.0, 0.35P
CASE 517BX
ISSUE O


NOTES:

1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994.
. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF

BURRS AND MOLD FLASH.

|  | MILLIMETERS |  |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | 0.45 | 0.55 |
| A1 | 0.00 | 0.05 |
| A3 | 0.13 REF |  |
| b | 0.12 |  |
| D | 1.00 |  |
| BSC |  |  |
| E | 1.00 |  |
| BSC |  |  |
| e | 0.35 |  |
| BSC |  |  |
| L1 | 0.25 |  |


*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## NLU1GT50

## PACKAGE DIMENSIONS

UDFN6, 1.2x1.0, 0.4P
CASE 517AA
ISSUE D


## NLU1GT50

## PACKAGE DIMENSIONS

## ULLGA6 1.0x1.0, 0.35P

CASE 613AD
ISSUE A


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND AND IS MEASURED BETWEEN 0.15
0.30 mm FROM THE TERMINAL TIP.
4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED.

|  | MILLIMETERS |  |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | --- | 0.40 |
| A1 | 0.00 | 0.05 |
| b | 0.12 | 0.22 |
| D | 1.00 |  |
| BSC |  |  |
| E | 1.00 |  |
| BSC |  |  |
| e | 0.35 |  |
| BSC |  |  |
| L | 0.25 | 0.35 |
| L1 | 0.30 | 0.40 |

MOUNTING FOOTPRINT
SOLDERMASK DEFINED*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## NLU1GT50

## PACKAGE DIMENSIONS

JLLGA6 1.45x1.0, 0.5P
CASE 613AF
ISSUE A


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP
4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED.

| DIM | MILLIMETERS |  |
| :---: | :---: | :---: |
|  | MIN | MAX |
| A | --- | 0.40 |
| A1 | 0.00 | 0.05 |
| b | 0.15 | 0.25 |
| D | 1.45 | SC |
| E | 1.00 | SC |
| e | 0.50 | SC |
| L | 0.25 | 0.35 |
| L1 | 0.30 | 0.40 |



DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$


[^0]:    
    
    
    
    
    
    
    
    
    
    
    
     Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

