ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
NLU1GU04

Single Unbuffered Inverter

The NLU1GU04 MiniGate ${ }^{T M}$ is an advanced high-speed CMOS unbuffered inverter in ultra-small footprint.

This device is well suited for use in oscillator, pulse-shaping and high input impedance amplifier applications. For digital applications, the NLU1GU04 is recommended.

The NLU1GU04 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{\text {PD }}=2.5 \mathrm{~ns}(\mathrm{Typ}) @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb -Free Devices

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT

1	NC
2	IN A
3	GND
4	OUT Y
5	NC
6	$\mathrm{~V}_{\mathrm{CC}}$

FUNCTION TABLE

A	\mathbf{Y}
L	H
H	L

ON Semiconductor ${ }^{\oplus}$
www.onsemi.com

See detailed ordering and shipping information on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to +7.0	V
IIK^{\prime}	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<$ GND	-20	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<$ GND	± 20	mA
10	DC Output Source/Sink Current	± 12.5	mA
Icc	DC Supply Current Per Supply Pin	± 25	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 25	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
TJ	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$	V
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA / JESD22-A114-A.
3. Tested to EIA / JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate		0	100
		Vs / V		
	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0		

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Low-Level Input Voltage		$\begin{gathered} \hline 1.65 \\ 2.3 \text { to } 5.5 \end{gathered}$	$\begin{gathered} \hline 0.85 x \\ V_{c C} \\ 0.80 x \\ V_{c c} \end{gathered}$			$\begin{gathered} \hline 0.85 \mathrm{x} \\ \mathrm{~V}_{c \mathrm{c}} \\ 0.80 \mathrm{x} \\ \mathrm{~V}_{c c} \end{gathered}$				V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		$\begin{gathered} 1.65 \\ 2.3 \text { to } 5.5 \end{gathered}$			$\begin{aligned} & 0.15 x \\ & V_{C C} \\ & 0.20 x \\ & V_{C C} \end{aligned}$		$\begin{aligned} & 0.15 x \\ & \mathrm{~V}_{\mathrm{cc}} \\ & 0.20 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$		$\begin{aligned} & 0.15 x \\ & V_{C C} \\ & 0.20 x \\ & V_{C C} \end{aligned}$	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	3.0 4.5	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		$\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$		
V ${ }_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		0 0 0	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
In	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	0 to 5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$	5.5			1.0		20		40	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	V_{cc} (V)	Test Condition	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, Input A to Output \bar{Y}	$\begin{gathered} 3.0 \text { to } \\ 3.6 \end{gathered}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		3.5	8.9		10.5		12	ns
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.8	11.4		13		15.5	
		$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		2.5	5.5		6.5		8.0	
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		3.8	7.0		8.0		9.5	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				4	10		10		10	pF
$\mathrm{CPD}^{\text {P }}$	Power Dissipation Capacitance (Note 6)	5.0			22						pF

6. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $\mathrm{I}_{\mathrm{CC}(O P R)}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NLU1GU04

Figure 3. Switching Waveforms

*Includes all probe and jig capacitance.
A $1-\mathrm{MHz}$ square input wave is recommended for propagation delay tests.

Figure 4. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping †
NLU1GU04MUTCG	UDFN6, $1.2 \times 1.0,0.4 P$ $(P b-F r e e)$	$3000 /$ Tape \& Reel
NLU1GU04AMUTCG	UDFN6, $1.45 \times 1.0,0.5 P$ $(P b-F r e e)$	$3000 /$ Tape \& Reel
NLU1GU04CMUTCG	UDFN6, 1.0 $\times 1.0,0.35 \mathrm{P}$	
(Pb-Free)		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLU1GU04

PACKAGE DIMENSIONS

UDFN6 1.45x1.0, 0.5P

CASE 517AQ
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
0.30 mm FROM THE TERMINAL TIP.

	MILLIMETERS		
DIM	MIN	MAX	
A	0.45	0.55	
A1	0.00	0.05	
A2	0.07		
b	0.20	0.30	
D	1.45	BSC	
E	1.00		
BSC			
e	0.50	BSC	
L	0.30	0.40	
L1	---	0.15	

DETAIL B OPTIONAL CONSTRUCTIONS

MOUNTING FOOTPRINT

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLU1GU04

PACKAGE DIMENSIONS

UDFN6 1.0x1.0, 0.35P
CASE 517BX
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994.
. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF

BURRS AND MOLD FLASH.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.12	
D	1.00	
BSC		
E	1.00	
BSC		
e	0.35	
BSC		
L1	0.25	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLU1GU04

PACKAGE DIMENSIONS

UDFN6, 1.2x1.0, 0.4P
CASE 517AA
ISSUE D

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Inverters category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLU2G04CMX1TCG NLV17SZ06DFT2G NCV1729SN35T1G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLU1G04AMUTCG NLX2G04CMUTCG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G NL17SG14DFT2G 74LVC06ADTR2G 74LVC04ADR2G NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV17SG14DFT2G 74ACT14SC BU4069UBF-E2 EMPP008Z NC7WZ14P6X NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-1200231F12 74VHCT04AM SV004IE5-1C TC74HC04APF TC7SH04F,LJ(CT TC7W14FK,LF 74VHC14MTCX 74LCX14MTC

SN74LVC1GU04DBVR NL27WZ14DFT2G NLU1G14BMX1TCG NLU2G04AMX1TCG NLU2G14AMX1TCG NLU3G14AMX1TCG
NLVVHC1G04DFT2G NLX2G04CMX1TCG

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

