ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Dual Schmitt-Trigger Inverter

The NLU2G14 MiniGate[™] is an advanced high–speed CMOS dual Schmitt–trigger inverter in ultra–small footprint.

The NLU2G14 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

The NLU2G14 can be used to enhance noise immunity or to square up slowly changing waveforms.

Features

- High Speed: $t_{PD} = 4.0 \text{ ns} (Typ) @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb–Free Devices

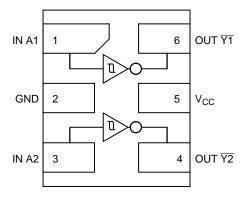
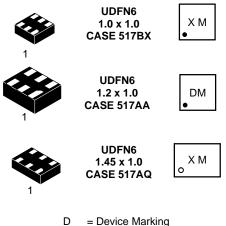


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT

1	IN A1
2	GND
3	IN A2
4	OUT Y2
5	V _{CC}
6	OUT Y1


FUNCTION TABLE				
Α	Y			
L H	H L			

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

M = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	V	
V _{OUT}	DC Output Voltage		-0.5 to +7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	±20	mA
Ι _Ο	DC Output Source/Sink Current	±12.5	mA	
I _{CC}	DC Supply Current Per Supply Pin	±25	mA	
I _{GND}	DC Ground Current per Ground Pin	±25	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for 10 Second	ds	260	°C
TJ	Junction Temperature Under Bias	150	°C	
MSL	Moisture Sensitivity	Level 1		
F _R	Flammability Rating Oxygen	Index: 28 to 34	UL 94 V–0 @ 0.125 in	
ILATCHUP	Latchup Performance Above V_{CC} and Below GND	±500	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.
Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	Digital Input Voltage	0	5.5	V
V _{OUT}	Output Voltage	0	5.5	V
T _A	Operating Free–Air Temperature	-55	+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate V_{CC} = 3.3 V ± 0.3 V V_{CC} = 5.0 V ± 0.5 V	0 0	No Limit No Limit	ns/V

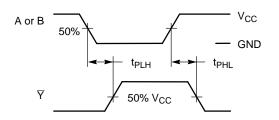
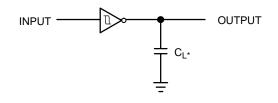
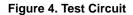
DC ELECTRICAL CHARACTERISTICS

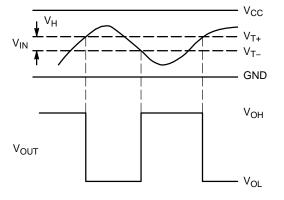
			V _{CC}	T _A = 25 °C		T _A = +85°C		T _A = −55°C to +125°C			
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5	1.85 2.86 3.50	2.0 3.0 3.6	2.2 3.15 3.85		2.2 3.15 3.85		2.2 3.15 3.85	V
V _{T-}	Negative Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65	1.5 2.3 2.9	1.65 2.46 3.05	0.9 1.35 1.65		0.9 1.35 1.65		V
V _H	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.57 0.67 0.74	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
V _{OH}	Minimum High–Level Output	$V_{IN} \le V_{T-MIN}$ I_{OH} = -50 µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
	Voltage	$\begin{array}{l} V_{IN} \leq V_{T-MIN} \\ I_{OH} = -4 \text{ mA} \\ I_{OH} = -8 \text{ mA} \end{array}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Maximum Low–Level Output	$V_{IN} \ge V_{T+MAX}$ $I_{OL} = 50 \ \mu A$	2.0 3.0 4.5		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
	Voltage	$\begin{array}{l} V_{IN} \geq V_{T+MAX} \\ I_{OL} = 4 \text{ mA} \\ I_{OL} = 8 \text{ mA} \end{array}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{CC}	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		10		40	μΑ

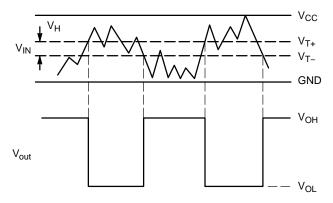
AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

		V _{CC}	Test		T _A = 25 °	с	T _A =	+85°C	T _A = -5 +12	55°C to 5°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	3.0 to	C _L = 15 pF		7.0	12.8	1.0	15	1.0	17	ns
t _{PHL}	Input Ă to Output Ÿ	3.6	C _L = 50 pF		8.5	16.3	1.0	18.5	1.0	20.5	
		4.5 to	C _L = 15 pF		4.0	8.6	1.0	10	1.0	11.5	
		5.5	C _L = 50 pF		5.5	10.6	1.0	12	1.0	13.5	
C _{IN}	Input Capacitance				5.0	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 3)	5.0			7.0						pF

3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.


Figure 3. Switching Waveforms



*Includes all probe and jig capacitance.

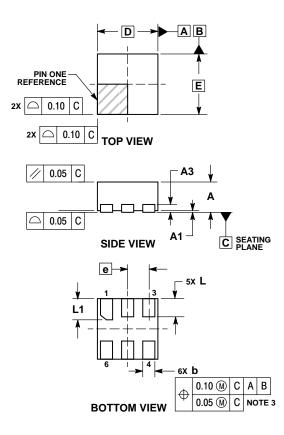
A 1–MHz square input wave is recommended for propagation delay tests.

(a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times

(b) A Schmitt–Trigger Offers Maximum Noise Immunity

Figure 5. Typical Schmitt-Trigger Applications

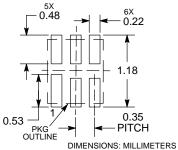
ORDERING INFORMATION


Device	Package	Shipping [†]
NLU2G14MUTCG	UDFN6, 1.2 x 1.0, 0.4P (Pb–Free)	3000 / Tape & Reel
NLU2G14AMUTCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P (Pb–Free)	3000 / Tape & Reel
NLU2G14CMUTCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

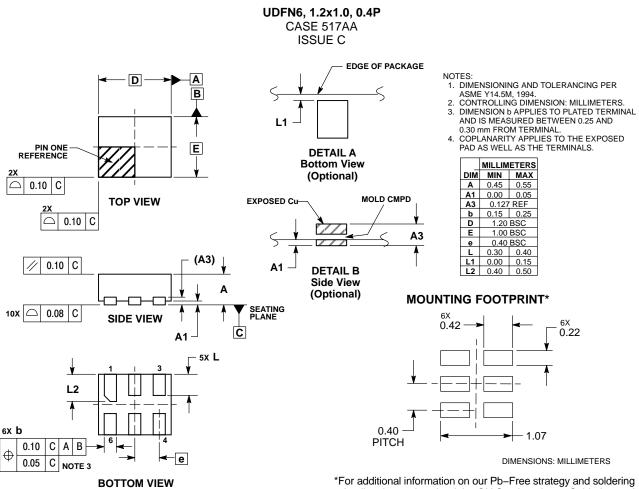
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

4

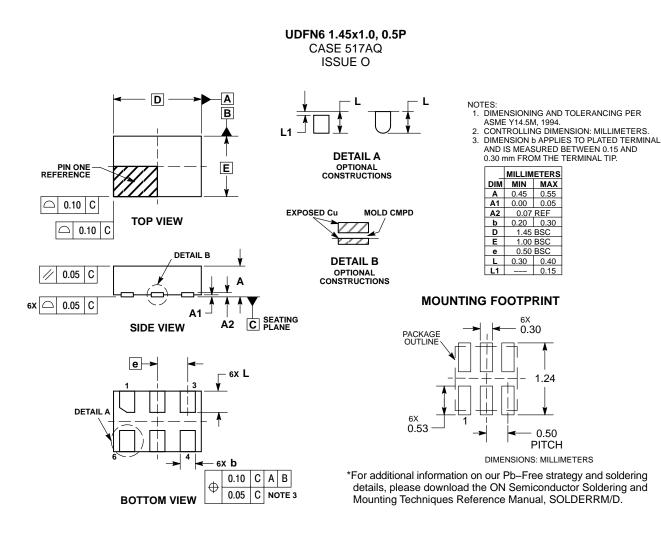
PACKAGE DIMENSIONS


UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BUIDES AND MOLD EI ASH ASH.


BURF	BURRS AND MOLD FL					
	MILLIMETERS					
DIM	MIN MAX					
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.13 REF					
b	0.12 0.22					
D	1.00	BSC				
E	1.00	BSC				
е	0.35 BSC					
L	0.25	0.35				
L1	0.30 0.40					

RECOMMENDED SOLDERING FOOTPRINT*


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardust, admages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that ON Semiconductor was negligent

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLU2G04CMX1TCG NLV17SZ06DFT2G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G 74LVC06ADTR2G 74LVC04ADR2G NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV17SG14DFT2G 74ACT14SC BU4069UBF-E2 EMPP008Z NC7WZ14P6X NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-120023-1F12 74VHCT04AM SV004IE5-1C TC74HC04APF TC7SH04F,LJ(CT JM38510/30003BCA TC7W14FK,LF 74VHC14MTCX 74LCX14MTC SN74LVC1GU04DBVR NLU1G14BMX1TCG NLU2G04AMX1TCG NLU2G14AMX1TCG NLU3G14AMX1TCG NLVVHC1G04DFT2G NLX2G04CMX1TCG NLX3G14AMX1TCG