ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC14060B

14-Bit Binary Counter and Oscillator

The MC14060B is a 14 -stage binary ripple counter with an on-chip oscillator buffer. The oscillator configuration allows design of either RC or crystal oscillator circuits. Also included on the chip is a reset function which places all outputs into the zero state and disables the oscillator. A negative transition on Clock will advance the counter to the next state. Schmitt trigger action on the input line permits very slow input rise and fall times. Applications include time delay circuits, counter controls, and frequency dividing circuits.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Features

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from Stages 4 Through 10 and 12 Through 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4060B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\begin{aligned} & \mathrm{V}_{\text {in }}, \\ & \mathrm{V}_{\text {out }} \end{aligned}$	Input or Output Voltage Range (DC or Transient)	$\begin{aligned} & -0.5 \text { to } \mathrm{V}_{\mathrm{DD}} \\ & +0.5 \end{aligned}$	V
$\begin{aligned} & \mathrm{I}_{\text {in }} \\ & \mathrm{I}_{\text {out }} \end{aligned}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{T}_{\text {A }}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8 Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOIC-16	SOEIAJ-16
TSSOP-16	
CASE 751B	F SUFFIX
DASE 966	CASE 948F

PIN ASSIGNMENT

Q12	$1 \bullet$	16] V_{DD}
Q13	2	15	Q10
Q14	3	14	Q8
Q6	4	13	Q9
Q5	5	12	RESET
Q7	6	11	CLOCK
Q4	7	10	OUT 1
v ${ }_{\text {SS }}$	8	9	OUT 2

MARKING DIAGRAMS

SOIC-16

SOEIAJ-16

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year WW, W = Work Week G or • = Pb-Free Package
(Note: Microdot may be in either location)

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC14060B

Table 1. Truth Table

Clock	Reset	Output State
\mathcal{J}	L	No Change
Advance to Next State		
H	L	All Outputs are Low

X = Don't Care

Figure 1. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14060BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14060BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14060BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14060BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14060BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape \& Reel
NLV14060BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape \& Reel
MC14060BFELG	SOEIAJ-16 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Symbol	Characteristic	V_{DD} Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
V OL	Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
V_{OH}	$\mathrm{V}_{\text {in }}=0$ or $\mathrm{V}_{\mathrm{DD}} \quad$ "1" Level	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
V_{IL}	Input Voltage \quad "0" Level ($\mathrm{V}_{\mathrm{O}}=4.5$ or 0.5 V) $\left(\mathrm{V}_{\mathrm{O}}=9.0\right.$ or 1.0 V$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 V$)$ nput Voltage "0" Level ($\mathrm{V}_{\mathrm{O}}=4.5$ or 0.5 V) $\left(\mathrm{V}_{\mathrm{O}}=9.0\right.$ or 1.0 V$)$ ($\mathrm{V}_{\mathrm{O}}=13.5$ or 1.5 V)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
V_{IH}	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	-	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Input Voltage "0" Level $\left(\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{Vdc}\right)$ (For Input 11 $\left(\mathrm{~V}_{\mathrm{O}}=9.0 \mathrm{Vdc}\right)$ and Output 10) $\left(\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{Vdc}\right)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	Vdc
V_{IH}	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	-	$\begin{gathered} \hline 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$		$\begin{gathered} \hline 4.0 \\ 8.0 \\ 12.5 \end{gathered}$		Vdc
$\mathrm{IOH}^{\text {I }}$	$\begin{array}{\|cc} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}\right) & \text { (Except Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}\right) & \text { Pins } 9 \text { and 10) } \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{~V}\right) & \end{array}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{aligned} & -2.4 \\ & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mA
loL	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mA
$\mathrm{l}_{\text {in }}$	Input Current	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{C}_{\text {in }}$	Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	-	-	-	-	5.0	7.5	-	-	pF
IDD	Quiescent Current (Per Package)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
${ }_{\text {IT }}$	Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.25 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(0.54 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(0.85 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\top}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right)$ Vfk
where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.002$.

SWITCHING CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Characteristic	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max	Unit
$\mathrm{t}_{\text {ti }}$	Output Rise Time (Counter Outputs)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 40 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	ns
${ }_{\text {t }}^{\text {HL }}$	Output Fall Time (Counter Outputs)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time Clock to Q4	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \hline 415 \\ & 175 \\ & 125 \end{aligned}$	$\begin{aligned} & \hline 740 \\ & 300 \\ & 200 \end{aligned}$	ns
	Clock to Q14	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 1.5 \\ & 0.7 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline 2.7 \\ & 1.3 \\ & 1.0 \end{aligned}$	$\mu \mathrm{S}$
t_{wH}	Clock Pulse Width	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 100 \\ 40 \\ 30 \end{gathered}$	$\begin{aligned} & \hline 65 \\ & 30 \\ & 20 \end{aligned}$	-	ns
f_{ϕ}	Clock Pulse Frequency	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 5 \\ 14 \\ 17 \end{gathered}$	$\begin{gathered} 3.5 \\ 8 \\ 12 \end{gathered}$	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THLL}} \end{aligned}$	Clock Rise and Fall Time	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	No Limit			ns
t_{w}	Reset Pulse Width	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 120 \\ 60 \\ 40 \end{gathered}$	$\begin{aligned} & 40 \\ & 15 \\ & 10 \end{aligned}$	-	ns
$t_{\text {PHL }}$	Propagation Delay Time Reset to On	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 170 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 350 \\ & 160 \\ & 100 \end{aligned}$	ns

5. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

$\mathrm{f} \approx \frac{1}{2.3 \mathrm{R}_{\mathrm{tc}} \mathrm{C}_{\mathrm{tc}}}$
if $1 \mathrm{kHz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$
and $2 \mathrm{R}_{\mathrm{tc}}<\mathrm{R}_{\mathrm{S}}<10 \mathrm{R}_{\mathrm{tc}}$
(f in Hz, R in ohms, C in farads)
The formula may vary for other frequencies. Recommended maximum value for the resistors in $1 \mathrm{M} \Omega$.

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

Figure 4. RC Oscillator Stability

Figure 6. Typical Crystal Oscillator Circuit

Figure 5. RC Oscillator Frequency as a Function of $R_{T C}$ and C

Table 2. Typical Data for Crystal Oscillator Circuit

Characteristic	500 kHz Circuit	32 kHz Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, R_{S}	$\begin{gathered} 500 \\ 1.0 \end{gathered}$	$\begin{aligned} & 32 \\ & 6.2 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{k} \Omega \end{gathered}$
External Resistor/Capacitor Values R_{O} C_{T} C_{S}	$\begin{aligned} & 47 \\ & 82 \\ & 20 \end{aligned}$	$\begin{gathered} 750 \\ 82 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Frequency Stability Frequency Changes as a Function of $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ $V_{D D}$ Change from 5.0 V to 10 V $V_{D D}$ Change from 10 V to 15 V Frequency Change as a Function of Temperature ($\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$) T_{A} Change from $-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ Complete Oscillator (Note 6) T_{A} Change from $+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Complete Oscillator (Note 6)	$\begin{aligned} & +6.0 \\ & +2.0 \\ & +100 \\ & +160 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +2.0 \\ & +120 \\ & +560 \end{aligned}$	ppm ppm ppm ppm

6. Complete oscillator includes crystal, capacitors, and resistors.

MC14060B

PACKAGE DIMENSIONS

SOIC-16
D SUFFIX
CASE 751B-05

ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0	0
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-16
F SUFFIX
CASE 966
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

> ON Semiconductor and the $1 N$ are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
CD4018BE CD4033BE CD4060BE NLV14040BDR2G NLV14017BDG TC74VHC4040F(E,K,F 74VHC163FT 74VHC161FT(BJ) 74VHC163FT(BJ) 74HC393D.652 74HC4040D.653 74HCT4040D.653 74HC191D. 652 HEF4060BT. 653 HEF4518BT.652 74HC160D,652

74HC390DB, 118 74HC163PW. 112 74HC191PW. 112 74HC390PW. 112 74HC393DB. 118 74HC4024D.652 74HCT193DB. 112
74HCT390DB. 112 74HC193PW. 112 74HC390D.652 74HC4017PW. 112 74HC4020DB. 112 74HC4020PW. 112 74HC4040DB. 112
74HC4040PW. 112 74HC4060DB. 112 74HC4520D. 112 74HCT393DB. 112 74HCT6323AD. 112 74LV393D.112 74LV393PW. 112
74LV4060D. 112 74LV4060DB. 112 74LV4060PW. 112 74LVC161D. 112 74LVC161PW. 112 XD74LS90 XD74LS93 CD4017BE
XD74LS161 XD74LS192 XD74LS193 CD4060BE XD4553

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

