ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Quad 2-Input "NAND" Schmitt Trigger

The MC14093B Schmitt trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14093B may be used in place of the MC14011B quad 2-input NAND gate for enhanced noise immunity or to "square up" slowly changing waveforms.

Features

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Triple Diode Protection on All Inputs
- Pin-for-Pin Compatible with CD4093
- Can be Used to Replace MC14011B
- Independent Schmitt-Trigger at each Input
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
PD	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

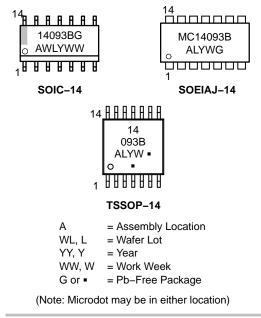
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

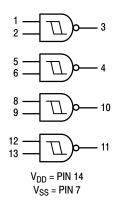
SOIC-14 D SUFFIX CASE 751A

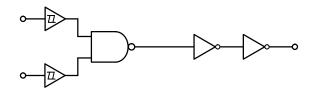

SOEIAJ-14 F SUFFIX CASE 965

TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

		,
1●	14	I V _{DD}
2	13] IN 2 _D
3	12] IN 1 _D
4	11	
5	10	OUT _C
6	9] IN 2 _C
7	8	IN 1C
	2 3 4	2 13 3 12 4 11 5 10 6 9


MARKING DIAGRAMS


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

LOGIC DIAGRAM

EQUIVALENT CIRCUIT SCHEMATIC (1/4 OF CIRCUIT SHOWN)

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC14093BDG	SOIC-14 (Pb-Free)	55 Units / Rail		
NLV14093BDG*	SOIC-14 (Pb-Free)	55 Units / Rail		
MC14093BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel		
NLV14093BDR2G*	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel		
MC14093BDTR2G	TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel		
NLV14093BDTR2G*	TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel		
MC14093BFELG	SOEIAJ–14 (Pb–Free)	2000 Units / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

MC14093B

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
----------------------------	---

			–55°C			25°C			125°C	
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" Le $V_{in} = V_{DD}$ or 0	vel V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
"1" Le $$V_{\rm in}=0$$ or $V_{\rm DD}$	vel V _{OH}	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	_ _ _	Vdc
$\begin{array}{l} \mbox{Output Drive Current} \\ (V_{OH} = 2.5 \mbox{ Vdc}) \\ (V_{OH} = 4.6 \mbox{ Vdc}) \\ (V_{OH} = 9.5 \mbox{ Vdc}) \\ (V_{OH} = 13.5 \mbox{ Vdc}) \end{array}$	гсе I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - - -	-1.7 -0.36 -0.9 -2.4	- - - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ S $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	ink I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current	l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I _{DD}	5.0 10 15	_ _ _	0.25 0.5 1.0	- - -	0.0005 0.0010 0.0015	0.25 0.5 1.0	- - -	7.5 15 30	μAdc
Total Supply Current (Notes 3 & 4 (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	IT	5.0 10 15			$I_T = (1)$	1.2 μA/kHz) 2.4 μA/kHz) 3.6 μA/kHz)	f + I _{DD}			μAdc
Hysteresis Voltage	V _H †	5.0 10 15	0.3 1.2 1.6	2.0 3.4 5.0	0.3 1.2 1.6	1.1 1.7 2.1	2.0 3.4 5.0	0.3 1.2 1.6	2.0 3.4 5.0	Vdc
Threshold Voltage Positive–Going	V _{T+}	5.0 10 15	2.2 4.6 6.8	3.6 7.1 10.8	2.2 4.6 6.8	2.9 5.9 8.8	3.6 7.1 10.8	2.2 4.6 6.8	3.6 7.1 10.8	Vdc
Negative-Going	V _{T-}	5.0 10 15	0.9 2.5 4.0	2.8 5.2 7.4	0.9 2.5 4.0	1.9 3.9 5.8	2.8 5.2 7.4	0.9 2.5 4.0	2.8 5.2 7.4	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
The formulas given are for the typical characteristics only at 25°C.
To calculate total supply current at loads other than 50 pF:

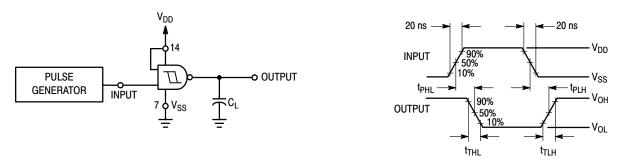
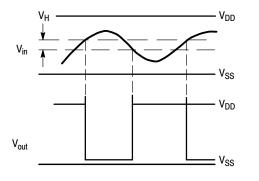
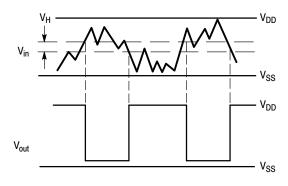
 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

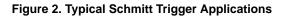
where: I_T is in μA (per package), C_L in pF, V = ($V_{DD} - V_{SS}$) in volts, f in kHz is input frequency, and k = 0.004.

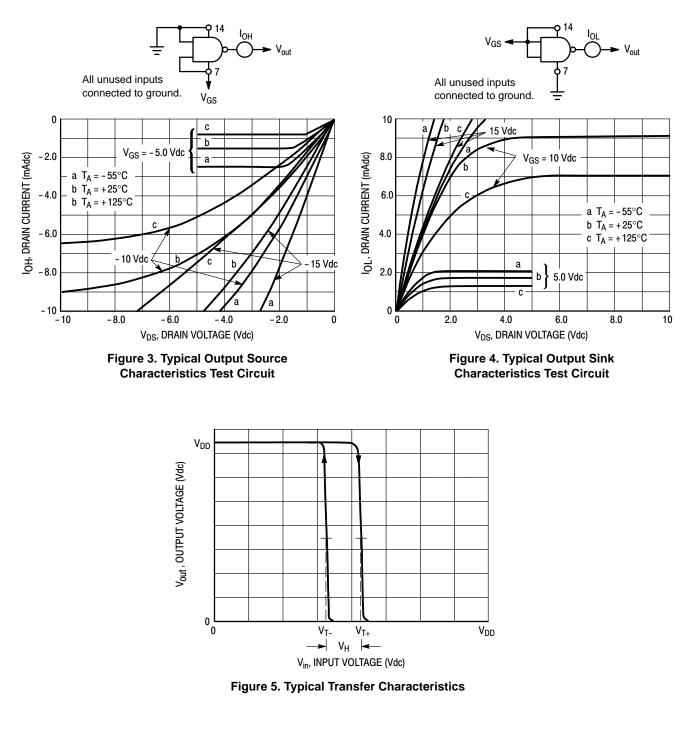
SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 5)	Мах	Unit
Output Rise Time	t _{TLH}	5.0 10 15		100 50 40	200 100 80	ns
Output Fall Time	t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time	tplh, tphl	5.0 10 15	- - -	125 50 40	250 100 80	ns

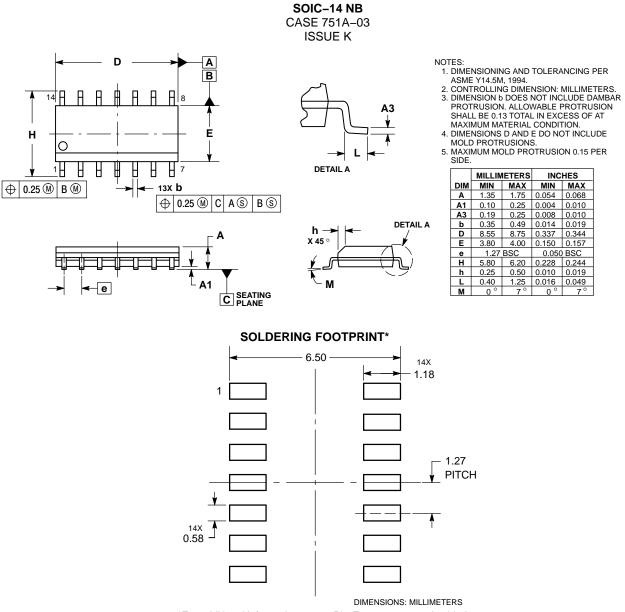
5. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Switching Time Test Circuit and Waveforms

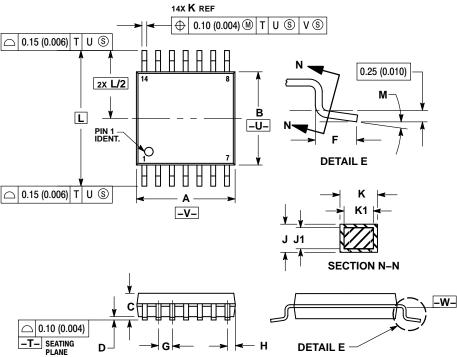

(a) Schmitt Triggers will square up inputs with slow rise and fall times.

(b) A Schmitt trigger offers maximum noise immunity in gate applications.



MC14093B

MC14093B

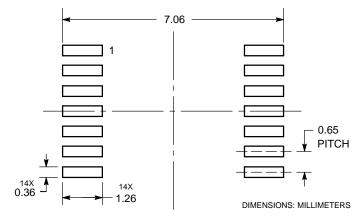

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**

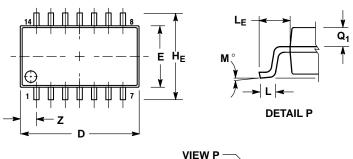
NOTES:

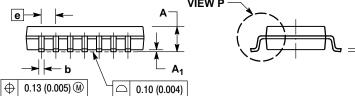

OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. S. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL

DIMENSION AT MAXIMUM MATERIAL CONDITION.

TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0 °	8 °	0 °	8 °	


SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-14 **CASE 965 ISSUE B**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
- 2. B. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.
- REFERENCE ONLY. 5.
- INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES	
DIM	MIN MAX		MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
C	0.10	0.20	0.004	0.008	
D	9.90	10.50	0.390	0.413	
Ε	5.10	5.45	0.201	0.215	
е	1.27	1.27 BSC		BSC	
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
М	0 °	10 °	0 °	10 °	
Q1	0.70	0.90	0.028	0.035	
Ζ		1.42		0.056	

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

74HC85N NLU1G32AMUTCG CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NL17SG08DFT2G NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G