ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC14094B

8-Stage Shift/Store Register with Three-State Outputs

The MC14094B combines an 8-stage shift register with a data latch for each stage and a 3-state output from each latch.

Data is shifted on the positive clock transition and is shifted from the seventh stage to two serial outputs. The Q_{S} output data is for use in high-speed cascaded systems. The Q_{S} output data is shifted on the following negative clock transition for use in low-speed cascaded systems.

Data from each stage of the shift register is latched on the negative transition of the strobe input. Data propagates through the latch while strobe is high.

Outputs of the eight data latches are controlled by 3 -state buffers which are placed in the high-impedance state by a logic Low on Output Enable.

Features

- 3-State Outputs
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Input Diode Protection
- Data Latch
- Dual Outputs for Data Out on Both Positive and Negative Clock Transitions
- Useful for Serial-to-Parallel Data Conversion
- Pin-for-Pin Compatible with CD4094B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol		Varameter	Value
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\mathrm{in}}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

[^1]
MC14094B

PIN ASSIGNMENT

STROBE	$1 \bullet$	16	V_{DD}
DATA	2	15	OUTPUT ENABLE
CLOCK ${ }^{\text {[}}$	3	14	Q5
Q1	4	13	Q6
Q2	5	12	Q7
Q3	6	11	Q8
Q4	7	10	Q's
$\mathrm{v}_{\text {SS }}$	8	9	Q_{S}

TRUTH TABLE

Clock	Output Enable	Strobe	Data	Parallel Outputs		Serial Outputs	
				Q1	Q_{N}	$\mathrm{Q}^{*}{ }^{\text {* }}$	Q's
ת	0	X	X	Z	Z	Q7	No Chg.
2	0	X	X	Z	Z	No Chg.	Q7
ノ	1	0	X	No Chg.	No Chg.	Q7	No Chg.
\checkmark	1	1	0	0	$\mathrm{Q}_{\mathrm{N}}-1$	Q7	No Chg.
\checkmark	1	1	1	1	$\mathrm{Q}_{\mathrm{N}}-1$	Q7	No Chg.
ר	1	1	1	No Chg.	No Chg.	No Chg.	Q7

* At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and Q_{S}.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14094BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14094BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
NLV14094BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
MC14094BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape \& Reel
NLV14094BDTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape \& Reel
MC14094BFELG	SOEIAJ-16 (Pb-Free)	2000 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|lc\|} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(V_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \text { "1" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) & \end{array}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{aligned} & -1.7 \\ & -0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	l OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3 \& 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }_{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} \mathrm{I}_{\mathrm{T}} & =(4.1 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ \mathrm{I}_{\mathrm{T}} & =(14 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ \mathrm{I}_{\mathrm{T}} & =(140 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{I}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$
3-State Output Leakage Current	$\mathrm{I}_{\text {TL }}$	15	-	± 0.1	-	± 0.0001	± 0.1	-	± 3.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 p F)+\left(C_{L}-50\right) \text { Vfk }
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right.$) in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
$\begin{aligned} & \text { Output Rise and Fall Time } \\ & t_{T L H}, t_{T H L}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{T H L}=(0.6 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.4 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{HL} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	ns
Propagation Delay Time (Figure 1) Clock to Serial out QS $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+305 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+107 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}+82 \mathrm{~ns}$ Clock to Serial out Q'S $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+350 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+149 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+62 \mathrm{~ns}$ Clock to Parallel out $t_{\text {PLH }} \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+375 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+177 \mathrm{~ns}$ $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+122 \mathrm{~ns}$ Strobe to Parallel out $t_{\text {PLH }}, t_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+245 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{CL}+127 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+87 \mathrm{~ns}$	$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 350 \\ 125 \\ 95 \\ \\ 230 \\ 110 \\ 75 \\ \\ 420 \\ 195 \\ 135 \end{gathered}$	$\begin{aligned} & 600 \\ & 250 \\ & 190 \\ & \\ & 460 \\ & 220 \\ & 150 \\ & \\ & 840 \\ & 390 \\ & 270 \end{aligned}$	ns
Output Enable to Output $\begin{aligned} & \mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+95 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHZ}} \mathrm{t}_{\text {PZL }}=(0.36 \mathrm{~ns} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+57 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+42 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZH }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+180 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZH }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+77 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZH }}=(0.26 \mathrm{~ns}) \mathrm{C}_{\mathrm{L}}+57 \mathrm{~ns} \end{aligned}$	$\begin{gathered} \begin{array}{c} t_{\text {PHZ }}, \\ t_{\text {PZL }} \end{array} \\ \hline \end{gathered}$	5.0 10 15 5.0 10 15		$\begin{gathered} 140 \\ 75 \\ 55 \\ \hline 225 \\ 95 \\ 70 \end{gathered}$	280 150 110 450 190 140	
Setup Time Data in to Clock	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 125 \\ & 55 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	ns
Hold Time Clock to Data	$t_{\text {h }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0 \\ 20 \\ 20 \end{gathered}$	$\begin{gathered} \hline-40 \\ -10 \\ 0 \end{gathered}$		ns
Clock Pulse Width, High	twh	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 83 \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$		ns
Clock Rise and Fall Time	$\begin{aligned} & \mathrm{tr}_{\mathrm{r}}^{(\mathrm{cl})} \\ & \mathrm{t}_{(\mathrm{cl})} \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$			$\begin{aligned} & \hline 15 \\ & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{S}$
Clock Pulse Frequency	f_{cl}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 5.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.25 \\ 2.5 \\ 3.0 \end{gathered}$	MHz
Strobe Pulse Width	twL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 200 \\ 80 \\ 70 \end{gathered}$	$\begin{gathered} 100 \\ 40 \\ 35 \end{gathered}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3-STATE TEST CIRCUIT

Figure 1.

BLOCK DIAGRAM

DYNAMIC TIMING DIAGRAM

MC14094B

PACKAGE DIMENSIONS

SOIC-16
D SUFFIX
CASE 751B-05

ISSUE K

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE
DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC14094B

PACKAGE DIMENSIONS

TSSOP-16
 DT SUFFIX
 CASE 948F

ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

PACKAGE DIMENSIONS

SOEIAJ-16
F SUFFIX
CASE 966
ISSUE A

DETAIL P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR 4. TERMINAL NUMB

REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	--	0.031

> ON Semiconductor and the ©N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D,118
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11 74HC164T14-13
STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653 74VHC4020FT(BJ)
74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT.653 74VHC164FT(BE)
74HCT594DB. 112 74HCT597DB. 112 74LV164D. 112 74LV165D. 112 74LV4094D. 112 74LV4094PW. 112 CD74HC165M 74AHC594T16-
13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13 74HC594S16-13

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{S S} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

 Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

