MC14503B

Hex Non-Inverting 3-State Buffer

The MC14503B is a hex non-inverting buffer with 3-state outputs, and a high current source and sink capability. The 3 -state outputs make it useful in common bussing applications. Two disable controls are provided. A high level on the Disable A input causes the outputs of buffers 1 through 4 to go into a high impedance state and a high level on the Disable B input causes the outputs of buffers 5 and 6 to go into a high impedance state.

Features

- 3-State Outputs
- TTL Compatible - Will Drive One TTL Load Over Full Temperature Range
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Two Disable Controls for Added Versatility
- Pin for Pin Replacement for MM80C97 and 340097
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 1)

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input Current (DC or Transient) per Pin	$\mathrm{I}_{\text {in }}$	± 10	mA
Output Current (DC or Transient) per Pin	$\mathrm{I}_{\text {out }}$	± 25	mA
Power Dissipation, per Package (Note 2)	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)		260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Maximum Ratings are those values beyond which damage to the device may occur.
2. Temperature Derating:
"D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\text {SS }} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

PIN ASSIGNMENT

DIS A	$1 \bullet$	16	V_{DD}
IN 1	2	15	DIS B
OUT 1 [3	14	IN 6
IN 2	4	13	OUT 6
OUT 2 -	5	12	IN 5
IN 3	6	11	OUT 5
OUT 3	7	10	IN 4
$\mathrm{V}_{\text {SS }}$	8	9	OUT 4

MARKING DIAGRAM

A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
YY, Y	$=$ Year
WW, W	$=$ Work Week
G	$=$ Pb-Free Package

TRUTH TABLE

$\mathbf{I n}_{\mathbf{n}}$	Appropriate Disable Input	Out $_{\mathbf{n}}$
0	0	0
1	0	1
X	1	High Impedance

X = Don't Care

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

LOGIC DIAGRAM

CIRCUIT DIAGRAM

*Diode protection on all inputs (not shown)

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
4. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
5. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{T}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $\mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.006$.

SWITCHING CHARACTERISTICS (Note 6) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	All Types		Unit
			Typ (Note 7)	Max	
$\begin{aligned} & \text { Output Rise Time } \\ & \text { t }_{\text {TLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8.0 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.2 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8.0 \mathrm{~ns} \end{aligned}$	tith $^{\text {l }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 90 \\ & 45 \\ & 35 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{T} H \mathrm{~L}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8.0 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.2 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+8.0 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 23 \\ & 18 \end{aligned}$	$\begin{aligned} & 90 \\ & 45 \\ & 35 \end{aligned}$	ns
Turn-Off Delay Time, all Outputs $t_{\text {PLH }}=(0.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+60 \mathrm{~ns}$ $t_{\text {PLH }}=(0.15 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+27 \mathrm{~ns}$ tPLH $=(0.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns}$	$t_{\text {tPLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 75 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 70 \\ & 50 \end{aligned}$	ns
$\begin{gathered} \text { Turn-On Delay Time, all Outputs } \\ \text { tpHL }=(0.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+60 \mathrm{~ns} \\ \mathrm{t}_{\text {PHL }}=(0.15 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+27 \mathrm{~ns} \\ \mathrm{t}_{\text {PHL }}=(0.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{gathered}$	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 75 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 70 \\ & 50 \end{aligned}$	ns
3-State Propagation Delay Time Output "1" to High Impedance	$t_{\text {PHZ }}$	5.0 10 15	$\begin{aligned} & 75 \\ & 40 \\ & 35 \end{aligned}$	150 80 70	ns
Output "0" to High Impedance	tplz	5.0 10 15	$\begin{aligned} & 80 \\ & 40 \\ & 35 \end{aligned}$	160 80 70	ns
High Impedance to "1" Level	$t_{\text {PZH }}$	5.0 10 15	$\begin{aligned} & 65 \\ & 25 \\ & 20 \end{aligned}$	130 50 40	ns
High Impedance to "0" Level	$t_{\text {PZL }}$	5.0 10 15	100 35 25	200 70 50	ns

6. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Switching Time Test Circuit and Waveforms
$\left(\mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}, \mathrm{t}_{\mathrm{PHL}}\right.$, and $\left.\mathrm{t}_{\mathrm{PLH}}\right)$

Figure 2. 3-State AC Test Circuit and Waveforms ($\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$)

ORDERING INFORMATION

Device	Package	Shipping †
MC14503BDG	SOIC-16 (Pb-Free)	$48 /$ Rail
MC14503BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14503BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ500RL7

