4-Bit Magnitude Comparator

The MC14585B 4–Bit Magnitude Comparator is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit has eight comparing inputs (A3, B3, A2, B2, A1, B1, A0, B0), three cascading inputs (A < B, A = B, and A > B), and three outputs (A < B, A = B, and A > B). This device compares two 4–bit words (A and B) and determines whether they are "less than", "equal to", or "greater than" by a high level on the appropriate output. For words greater than 4–bits, units can be cascaded by connecting outputs (A > B), (A < B), and (A = B) to the corresponding inputs of the next significant comparator. Inputs (A < B), (A = B), and (A > B) on the least significant (first) comparator are connected to a low, a high, and a low, respectively.

Applications include logic in CPU's, correction and/or detection of instrumentation conditions, comparator in testers, converters, and controls.

Features

- Diode Protection on All Inputs
- Expandable
- Applicable to Binary or 8421–BCD Code
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load over the Rated Temperature Range
- Can be Cascaded See Figure 3
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable*
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to VSS)

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V _{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	V _{in} , V _{out}	–0.5 to V _{DD} + 0.5	V
Input or Output Current (DC or Transient) per Pin	I _{in} , I _{out}	±10	mA
Power Dissipation per Package (Note 1)	PD	500	mW
Ambient Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (8–Second Soldering)	TL	260	°C

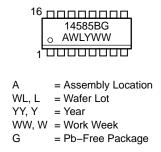
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

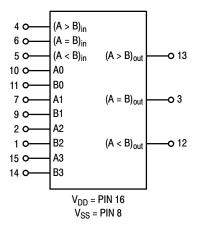
ON Semiconductor®


http://onsemi.com

PIN ASSIGNMENT

B2 [1●	16	V _{DD}
A2 [2	15	A3
$(A = B)_{out}$	3	14	B3
(A u B) _{in} [4	13] (A u B) _{out}
(A t B) _{in} [5	12	A t B) _{out}
(A = B) _{in} [6	11	B0
A1 [7	10	A0
v _{ss} [8	9	B1

MARKING DIAGRAM


ORDERING INFORMATION

Device	Package	Shipping [†]
MC14585BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14585BDR2G	SOIC-16 (Pb-Free)	2500/Tape & Reel
NLV14585BDR2G*	SOIC-16 (Pb-Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC14585B

BLOCK DIAGRAM

TRUTH TABLE (x = 1	Don't Care)
--------------------	-------------

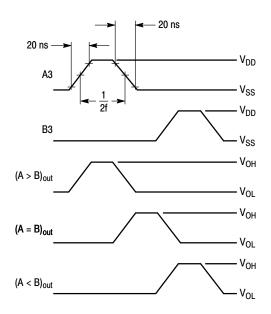
	Inputs								
Comparing				Cascading					
A3, B3	A2, B2	A1, B1	A0, B0	A < B	A = B	A > B	A < B	A = B	A > B
A3 > B3	х	х	х	х	х	х	0	0	1
A3 = B3	A2 > B2	х	х	х	х	х	0	0	1
A3 = B3	A2 = B2	A1 > B1	х	х	х	х	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 > B0	х	х	х	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	0	х	0	0	1
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	1	х	0	1	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	1	0	х	1	0	0
A3 = B3	A2 = B2	A1 = B1	A0 = B0	1	1	х	1	1	0
A3 = B3	A2 = B2	A1 = B1	A0 < B0	х	х	х	1	0	0
A3 = B3	A2 = B2	A1 < B1	х	х	х	х	1	0	0
A3 = B3	A2 < B2	х	х	х	х	х	1	0	0
A3 < B3	х	х	х	х	х	х	1	0	0

MC14585B

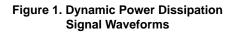
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

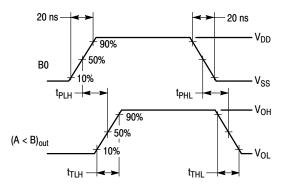
			-55	5°C	25°C			125	5°C	
Characteristic	Symbol	V _{DD} Vdc	Min	Мах	Min	Typ (Note 2)	Мах	Min	Мах	Unit
Output Voltage "0" Level V _{in} = V _{DD} or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
"1" Level V_{in} = 0 or V_{DD}	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	- - -	Vdc
Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	V _{IL}	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
"1" Level ($V_O = 0.5 \text{ or } 4.5 \text{ Vdc}$) ($V_O = 1.0 \text{ or } 9.0 \text{ Vdc}$) ($V_O = 1.5 \text{ or } 13.5 \text{ Vdc}$)	V _{IH}	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _ _	Vdc
$\begin{array}{l} \mbox{Output Drive Current} \\ (V_{OH} = 2.5 \mbox{ Vdc}) \\ (V_{OH} = 4.6 \mbox{ Vdc}) \\ (V_{OH} = 9.5 \mbox{ Vdc}) \\ (V_{OH} = 13.5 \mbox{ Vdc}) \end{array}$	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
$\begin{array}{l} (V_{OL} = 0.4 \; Vdc) & Sink \\ (V_{OL} = 0.5 \; Vdc) \\ (V_{OL} = 1.5 \; Vdc) \end{array}$	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current	l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance ($V_{in} = 0$)	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I _{DD}	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μAdc
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) ($C_L = 50 \text{ pF}$ on all outputs, all buffers switching)	Ι _Τ	5.0 10 15	$I_{T} = (1.2 \mu A/kHz) f + I_{DD}$				μAdc			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions, diffess otherwise noted. Froduct performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. 3. The formulas given are for the typical characteristics only at 25° C. 4. To calculate total supply current at loads other than 50 pF: $I_{T}(C_{L} = I_{T}(50 \text{ pF}) + (C_{L} = 50)$ Vfk where: I_{T} is in μ A (per package), C_L in pF,

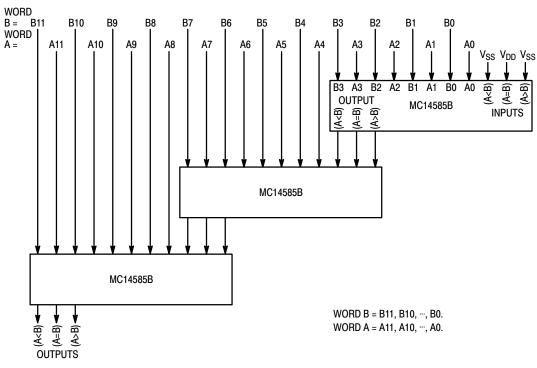

 $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

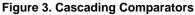
SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)


Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Мах	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Turn–On, Turn–Off Delay Time t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 345 ns t _{PLH} , t _{PHL} = (0.66 ns/pF) C _L + 147 ns t _{PLH} , t _{PHL} = (0.5 ns/pF) C _L + 105 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	430 180 130	860 360 260	ns

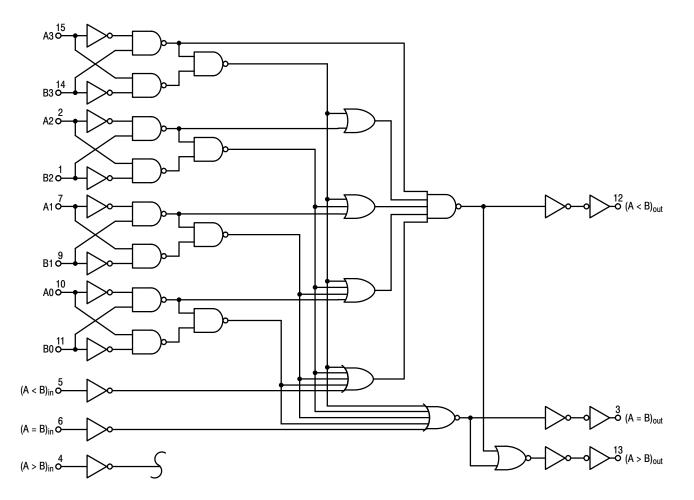

5. The formulas given are for the typical characteristics only at 25°C.

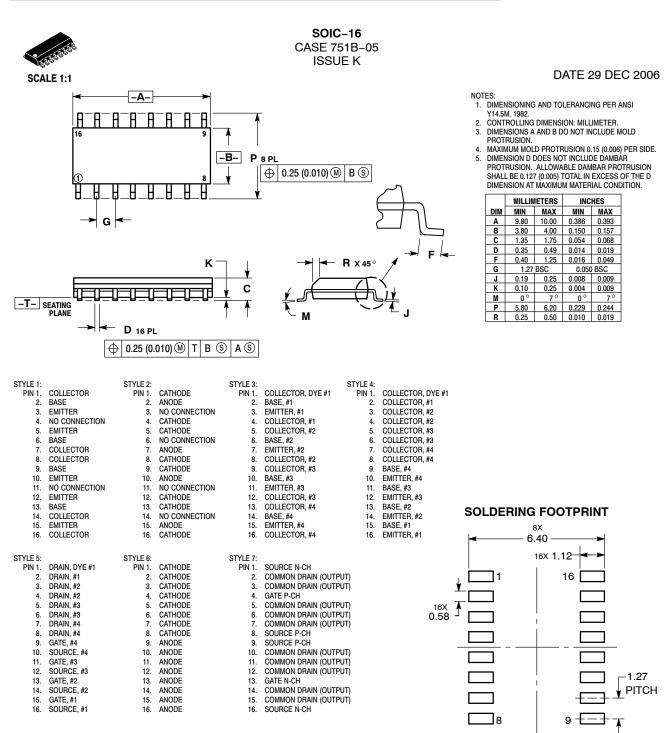
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Inputs (A>B) and (A=B) high, and inputs B2, A2, B1, A1, B0, A0 and (A<B) low. f in respect to a system clock.



Inputs (A>B) and (A=B) high, and inputs B3, A3, B2, A2, B1, A1, A0, and (A<B) low.


Figure 2. Dynamic Signal Waveforms



MC14585B

LOGIC DIAGRAM

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Comparators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 742450X
 74HC85DB.118
 74HC688DB.118
 74HCT85DB.112
 MC33298
 74FCT521CTQG
 74HCT688N
 74HC688D,653
 74HC85D,653

 74HC85DB,112
 74HC85DB,118
 74HCT85D,652
 MC14585BDG
 MC14585BDR2G
 MC14585BD
 LM2903VNG
 MC3363DW
 CD4063BE

 CD4063BM
 CD74HC688E
 CD74HC85E
 CD74HC85M
 CD74HC85PW
 CD74HC7688E
 CD74HC7688M

 SN74LS684NSR
 SN74LS688NSR
 SN74F521NSR
 SN74ALS688NSR
 SN74ALS518DW
 SN74ALS518DW

 SN74ALS518N
 SN74ALS520DW
 SN74ALS521DWR
 SN74ALS688DW
 SN74F521DW
 SN74F521DWR
 SN74F521N

 SN74HC682N
 SN74HC684DW
 SN74HC684N
 SN74HC688N
 SN74LS682DW
 SN74LS684N
 SN74LS688DW
 SN74LS682N
 SN74LS688DW
 SN74F521DWR
 SN74F521N