Single Non-Inverting Buffer with Open Drain Output

The NLV17SZ07 is a high performance single non–inverting buffer with open drain outputs operating from a 1.65 to 5.5 V supply.

The Output stage is open drain with Over Voltage Tolerance. This allows the NLV17SZ07 to be used to interface 5.0 V circuits to circuits of any voltage between 0 and +7.0 V.

Features

- Tiny SOT-353 Package
- Extremely High Speed: t_{PD} 2.5 ns (typical) at $V_{CC} = 5 \text{ V}$
- Designed for 1.65 V to 5.5 V V_{CC} Operation, CMOS Compatible
- • Over Voltage Tolerant Inputs V_{IN} may be Between 0 and 7.0 V for V_{CC} Between 0.5 and 5.5 V
- TTL Compatible Interface Capability with 5.0 V TTL Logic with V_{CC} = 2.7 V to 3.6 V
- LVCMOS Compatible
- 24 mA Output Sink Capability, Pullup may be between 0 and 7.0 V
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Chip Complexity: FET = 20
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

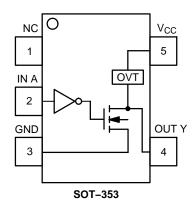


Figure 1. Pinout

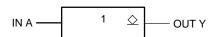


Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SC-88A / SOT-353 / SC-70 DF SUFFIX CASE 419A

L7 = Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

PIN ASSIGNMENT

Pin	Function
1	NC
2	IN A
3	GND
4	OUT Y
5	V _{CC}

FUNCTION TABLE

Input	Output
Α	Y
L	L
Н	Z

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$	V
Vo	DC Output Voltage Active Mode, LOW State (Note 1) Tri–State Mode Power–Down Mode ($V_{CC} = 0 \text{ V}$)	-0.5 to V _{CC} + 0.5 -0.5 to +7.0 -0.5 to +7.0	V
I _{OK}	DC Output Diode Current V _O < GND	- 50	mA
I _{IK}	DC Input Diode Current V _I < GND	-50	mA
I _O	DC Output Sink Current	±50	mA
I _{CC}	DC Supply Current per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
P _D	Power Dissipation in Still Air	186	mW
θ_{JA}	Thermal Resistance	350	°C/W
T _L	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	+150	°C
I _{Latch-Up}	Latch–Up Performance Above V _{CC} and Below GND at 85°C (Note 5)	±500	mA
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
ESD	ESD Classification Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	Class 2 Class B N/A	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Io absolute maximum rating must be observed.

2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.

3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.

- Tested to JESD22–C101–A.
 Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Paran	neter	Min	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	1.65 1.5	5.5 5.5	V
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	Active Mode, LOW State Tri–State Mode Power–Down Mode ($V_{CC} = 0 \text{ V}$)	0 0 0	V _{CC} 5.5 5.5	V
T _A	Operating Free–Air Temperature		-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0 0	20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V	Т	A = 25°	C	-55°C ≤T,	₄ ≤ 125°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65 to 1.95 2.3 to 5.5	0.75 V _{CC} 0.7 V _{CC}			0.75 V _{CC} 0.7 V _{CC}		V
V _{IL}	Low-Level Input Voltage		1.65 to 1.95 2.3 to 5.5			0.25 V _{CC} 0.3 V _{CC}		0.25 V _{CC} 0.3 V _{CC}	V
I _{LKG}	Z–State Output Leakage Current	$V_{IN} = V_{IH}$ $V_{OUT} = V_{CC}$ or GND	2.3 to 5.5			±5.0		±10.0	μΑ
V _{OL}	Low-Level Output	I _{OL} = 100 μA	1.65 to 5.5		0.0	0.1		0.1	V
	Voltage V _{IN} = V _{IL}	I _{OL} = 4 mA	1.65		0.08	0.24		0.24	
		I _{OL} = 8 mA	2.3		0.20	0.3		0.3	
		I _{OL} = 12 mA	2.7		0.22	0.4		0.4	
		$I_{OL} = 16 \text{ mA}$	3.0		0.28	0.4		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.38	0.55		0.55	
		$I_{OL} = 32 \text{ mA}$	4.5		0.42	0.55		0.55	
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 5.5			±0.1		±1.0	μΑ
I _{OFF}	Power Off Leakage Current	$V_{IN} = 5.5 \text{ V or}$ $V_{OUT} = 5.5 \text{ V}$	0			1		10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5			1		10	μА
I _{CCT}	Quiescent Supply Current	$V_{IN} = 3.0 \text{ V}$	3.6			10		100	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS t_R = t_F = 2.5 ns; C_L = 50 pF; R_L = 500 Ω

				Т	A = 25°	C	–55°C ≤T	_A ≤ 125°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PZL} Propagation Delay	t_{PZL} Propagation Delay (Figure 3 and 4) $R_{L} = R_1 = 500 \Omega$, $C_{L} = 50 pF$	1.8 ± 0.15	0.8	5.3	11.6	0.8	12.0	ns	
			2.5 ± 0.2	1.2	3.7	5.8	1.2	6.4	
			3.3 ± 0.3	0.8	2.9	4.4	0.8	4.8	
			5.0 ± 0.5	0.5	2.3	3.5	0.5	3.9	
t _{PLZ}	Propagation Delay	$R_{L=} R_{1} = 500 \Omega, C_{L} = 50 pF$	1.8 ± 0.15	0.8	5.3	11.6	0.8	1.20	ns
	(Figure 3 and 4)		2.5 ± 0.2	1.2	2.8	5.8	1.2	6.4	
			3.3 ± 0.3	0.8	2.1	4.4	0.8	4.8	
			5.0 ± 0.5	0.5	1.4	3.5	0.5	3.9	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$	>2.5	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	4.0	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	10 MHz, V_{CC} = 5.5 V, V_I = 0 V or V_{CC}	4.0	pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

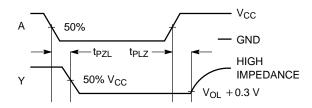
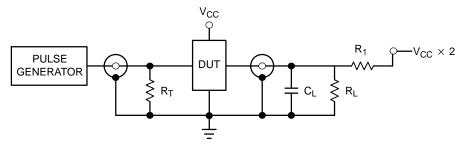



Figure 3. Switching Waveforms

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NLV17SZ07DFT2G*	SOT-353/SC70-5/SC-88A (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L**

DATE 17 JAN 2013

- TIES:
 DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 3.
- 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE
- MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

-B-S D 5 PL 0.2 (0.008) M B M **SOLDER FOOTPRINT**

+++			
0.40			0.65 0.025
	<u>1.9</u> 0.0748	SCALE 20:1	$\left(\frac{\text{mm}}{\text{inches}}\right)$
OT # F 4	07450	07.45.0	

0.50 0.0197

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. CATHODE
2. EMITTER	2. EMITTER	2. N/C	2. DRAIN 1/2	2. COMMON ANODE
3. BASE	3. BASE	3. ANODE 2	3. SOURCE 1	3. CATHODE 2
4. COLLECTOR	4. COLLECTOR	4. CATHODE 2	4. GATE 1	4. CATHODE 3
4. COLLECTOR	4. COLLECTOR	4. CATHODE 2	4. GATE 1	4. CATHODE 3
5. COLLECTOR	5. CATHODE	5. CATHODE 1	5. GATE 2	5. CATHODE 4

J. GOLLLOTON	3. CATTODE	J. CATHODE I	J. GAIL 2	J. CATTODE 4
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	SC-88A (SC-70-5/SOT-353)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B
042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1
74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG
LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC
LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G