ON Semiconductor # Is Now To learn more about onsemi[™], please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, # Hex D Flip-Flop with Common Clock and Reset # **High-Performance Silicon-Gate CMOS** The MC74HC174A is identical in pinout to the LS174. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of six D flip-flops with common Clock and Reset inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Reset is asynchronous and active-low. #### **Features** - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1.0 μA - In Compliance with the Requirements Defined by JEDEC Standard No. 7 A - Chip Complexity: 162 FETs or 40.5 Equivalent Gates - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant # ON Semiconductor® http://onsemi.com # MARKING DIAGRAMS PDIP-16 N SUFFIX CASE 648 SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Figure 1. Pin Assignment Figure 2. Logic Diagram # **FUNCTION TABLE** | | Output | | | |-------|--------|---|-----------| | Reset | Clock | D | Q | | L | Х | Х | L | | Н | _ | Н | Н | | Н | _ | L | L | | Н | L | Х | No Change | | Н | ~ | Х | No Change | ## **DESIGN/VALUE TABLE** | Design Criteria | Value | Units | |---------------------------------|--------|-------| | Internal Gate Count* | 40.5 | ea. | | Internal Gate Propagation Delay | 1.5 | ns | | Internal Gate Power Dissipation | 5.0 | μW | | Speed Power Product | 0.0075 | рJ | ^{*}Equivalent to a two-input NAND gate. # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------------|-----------------------|-----------------------| | MC74HC174ANG | PDIP-16
(Pb-Free) | 500 Units / Rail | | MC74HC174ADG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC74HC174ADR2G | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | MC74HC174ADTR2G | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | | NLV74HC174ADG* | SOIC-16
(Pb-Free) | 55 Units / Rail | | NLV74HC174ADR2G* | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | NLV74HC174ADTR2G* | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | | NLV74HC174ANG* | PDIP-16
(Pb-Free) | 25 Units / Rail | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable # **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |----------------------|---|--|--------------------------------|------| | V _{CC} | DC Supply Voltage | (Referenced to GND) | -0.5 to +7.0 | V | | V _{IN} | DC Input Voltage | (Referenced to GND) | - 1.5 to V _{CC} + 1.5 | V | | V _{OUT} | DC Output Voltage | (Referenced to GND) (Note 1) | -0.5 to $V_{CC} + 0.5$ | V | | I _{IN} | DC Input Current, per Pin | | ±20 | mA | | I _{OUT} | DC Output Current, per Pin | | ±25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | | ±50 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | PDIP, SOIC, TSSOP | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance | PDIP
SOIC
TSSOP | 78
112
148 | °C/W | | P _D | Power Dissipation in Still Air at 85°C | PDIP
SOIC
TSSOP | 750
500
450 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating | Oxygen Index: 30% - 35% | UL 94 V-0 @ 0.125 in. | | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4) | > 2000
> 100
> 500 | ٧ | | I _{LATCHUP} | Latchup Performance Above V _{CC} | and Below GND at 85°C (Note 5) | ±300 | mA | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - I_O absolute maximum rating must be observed. Tested to EIA/JESD22-A114-A. - 3. Tested to EIA/JESD22-A115-A. - Tested to JESD22-C101-A. Tested to EIA/JESD78. ## **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Unit | | |---------------------------------------|---|--|-------------|---------------------------|----| | V _{CC} | DC Supply Voltage | (Referenced to GND) | 2.0 | 6.0 | V | | V _{IN} ,
V _{OUT} | DC Input Voltage, Output Voltage | (Referenced to GND) (Note 6) | 0 | V _{CC} | V | | T _A | Operating Temperature, All Package Types | | - 55 | + 125 | °C | | t _r , t _f | CLOCK Input Rise and Fall Time (Figure 4) | V _{CC} = 2.0 V
V _{CC} = 3.3 V
V _{CC} = 4.5 V
V _{CC} = 6.0 V | 0
0
0 | 1000
700
500
400 | ns | 6. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level. # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | V _{CC} | Guaran | teed Limi | t | | |-----------------|---|---|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | Test Conditions | V | -55°C to 25°C | ≤ 85°C | ≤125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} \le 20 \mu A$ | 2.0
4.5
6.0 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V | | V _{IL} | Maximum Low-Level Input
Voltage | V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} \le 20 \mu A$ | 2.0
4.5
6.0 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | V | | V _{OH} | Minimum High-Level Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$ I_{OUT} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $V_{IN} = V_{IH}$ or V_{IL}
$ I_{OUT} \le 4.0 \text{ mA}$
$ I_{OUT} \le 5.2 \text{ mA}$ | 4.5
6.0 | 3.98
5.48 | 3.84
5.34 | 3.7
5.2 | | | V _{OL} | Maximum Low-Level Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$ I_{OUT} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $V_{IN} = V_{IH}$ or V_{IL}
$ I_{OUT} \le 4.0$ mA
$ I_{OUT} \le 5.2$ mA | 4.5
6.0 | 0.26
0.26 | 0.33
0.33 | 0.4
0.4 | | | I _{IN} | Maximum Input Leakage Current | V _{IN} = V _{CC} or GND | 6.0 | ± 0.1 | ±1.0 | ±1.0 | μΑ | | Icc | Maximum Quiescent Supply
Current (per Package) | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$ | 6.0 | 4.0 | 40 | 160 | μΑ | # AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns) | | | V _{CC} | Guaranteed Limit | | | | |--------------------------------------|--|-------------------|------------------|-----------------|-----------------|------| | Symbol | Parameter | v | -55°C to 25°C | ≤ 85°C | ≤125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) (Figures 4 and 7) | 2.0
4.5
6.0 | 6.0
30
35 | 4.8
24
28 | 4.0
20
24 | MHz | | t _{PLH}
t _{PHL} | Maximum Propagation Delay, Clock to Q (Figures 5 and 7) | 2.0
4.5
6.0 | 110
22
19 | 140
28
24 | 165
33
28 | ns | | t _{PLH}
t _{PHL} | Maximum Propagation Delay, Reset to Q (Figures 2 and 7) | 2.0
4.5
6.0 | 110
21
19 | 140
28
24 | 160
32
27 | ns | | t _{TLH}
t _{THL} | Maximum Output Transition Time, Any Output (Figures 4 and 7) | 2.0
4.5
6.0 | 75
15
13 | 95
19
16 | 110
22
19 | ns | | C _{in} | Maximum Input Capacitance | | 10 | 10 | 10 | pF | | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|---|----------|---|----| | C_{PD} | Power Dissipation Capacitance, per Enabled Output | (Note 7) | 62 | pF | ^{7.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. TIMING REQUIREMENTS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$) | | | | | Guaranteed Limit | | | | | | | |---------------------------------|---|--------|-------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|------| | | | | v_{cc} | -55°C | to 25°C | ≤8 | 5°C | ≤12 | 25°C | | | Symbol | Parameter | Figure | ٧ | Min | Max | Min | Max | Min | Max | Unit | | t _{su} | Minimum Setup Time, Data to Clock | 6 | 2.0
4.5
6.0 | 50
10
9.0 | | 65
13
11 | | 75
15
13 | | ns | | t _h | Minimum Hold Time, Clock to Data | 6 | 2.0
4.5
6.0 | 5.0
5.0
5.0 | | 5.0
5.0
5.0 | | 5.0
5.0
5.0 | | ns | | t _{rec} | Minimum Recovery Time,
Reset Inactive to Clock | 5 | 2.0
4.5
6.0 | 5.0
5.0
5.0 | | 5.0
5.0
5.0 | | 5.0
5.0
5.0 | | ns | | t _w | Minimum Pulse Width, Clock | 4 | 2.0
4.5
6.0 | 75
15
13 | | 95
19
16 | | 110
22
19 | | ns | | t _w | Minimum Pulse Width, Reset | 5 | 2.0
4.5
6.0 | 75
15
13 | | 95
19
16 | | 110
22
19 | | ns | | t _r , t _f | Maximum Input Rise and Fall Times | 4 | 2.0
4.5
6.0 | | 1000
500
400 | | 1000
500
400 | | 1000
500
400 | ns | Figure 3. Expanded Logic Diagram Figure 4. Switching Waveform Figure 5. Switching Waveform Figure 6. Switching Waveform *Includes all probe and jig capacitance Figure 7. Test Circuit # **PACKAGE DIMENSIONS** PDIP-16 CASE 648-08 ISSUE T - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | В | 0.250 | 0.270 | 6.35 | 6.85 | | С | 0.145 | 0.175 | 3.69 | 4.44 | | D | 0.015 | 0.021 | 0.39 | 0.53 | | F | 0.040 | 0.70 | 1.02 | 1.77 | | G | 0.100 | BSC | 2.54 | BSC | | Н | 0.050 | BSC | 1.27 | BSC | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.110 | 0.130 | 2.80 | 3.30 | | L | 0.295 | 0.305 | 7.50 | 7.74 | | М | 0° | 10 ° | 0° | 10 ° | | S | 0.020 | 0.040 | 0.51 | 1.01 | # **PACKAGE DIMENSIONS** SOIC-16 CASE 751B-05 ISSUE K #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. 4. ALLOWABLE DAMBAR PROTRUSION. 5. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | MILLIMETERS INCHES | | | |-----|--------|--------------------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | 1.27 BSC | | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | # **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **PACKAGE DIMENSIONS** # TSSOP-16 CASE 948F-01 **ISSUE B** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. - FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION ALL QWARI E - DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 3. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | - | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | ſ | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | BSC | 0.252 BSC | | | | М | 0° | 8° | 0° | 8 ° | | ## **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal linjury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportuni ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 700 2010 Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Flip-Flops category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D.652 74AHC574D.118 74AHCT1G79GW.125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653