ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC74HC174A

Hex D Flip-Flop with Common Clock and Reset

High-Performance Silicon-Gate CMOS

The MC74HC174A is identical in pinout to the LS174. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of six D flip-flops with common Clock and Reset inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Reset is asynchronous and active-low.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 162 FETs or 40.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING
DDIP-16
N SUFFIX
CASE 648

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC74HC174A

RESET	$1 \bullet$		$7 \mathrm{~V}_{\mathrm{CC}}$
Q0	2	15	Q5
D0	3	14	D5
D1	4	13	D4
Q1	5	12	Q4
D2	6	11	D3
Q2	7	10	Q3
GND [8	9	CLOCK

Figure 1. Pin Assignment

Figure 2. Logic Diagram

FUNCTION TABLE

Inputs			Output
Reset	Clock	D	Q
L	X	X	L
H	Γ	H	H
H	Γ	L	L
H	L	X	No Change
H	L	X	No Change

DESIGN/VALUE TABLE

Design Criteria	Value	Units
Internal Gate Count*	40.5	ea.
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	$\mu \mathrm{~W}$
Speed Power Product	0.0075	pJ

*Equivalent to a two-input NAND gate.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74HC174ANG	PDIP-16 (Pb-Free)	500 Units / Rail
MC74HC174ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC174ADR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC74HC174ADTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC174ADG*	SOIC-16 (Pb-Free)	55 Units / Rail
NLV74HC174ADR2G*	SOIC-16 (Pb-Free)	2500 / Tape \& Reel
NLV74HC174ADTR2G*	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC174ANG*	PDIP-16 (Pb-Free)	25 Units / Rail

[^1]MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage	(Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	(Referenced to GND)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	(Referenced to GND) (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{N}	DC Input Current, per Pin		± 20	mA
Iout	DC Output Current, per Pin		± 25	mA
I_{cc}	DC Supply Current, V_{CC} and GND Pins		± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	PDIP, SOIC, TSSOP	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+ 150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance	$\begin{array}{r} \text { PDIP } \\ \text { SOIC } \\ \text { TSSOP } \end{array}$	$\begin{gathered} \hline 78 \\ 112 \\ 148 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	$\begin{array}{r} \hline \text { PDIP } \\ \text { SOIC } \\ \text { TSSOP } \end{array}$	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
MSL	Moisture Sensitivity		Level 1	
F_{R}	Flammability Rating	Oxygen Index: 30\% - 35\%	UL 94 V-0 @ 0.125 in.	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{aligned} & >2000 \\ & >100 \\ & >500 \end{aligned}$	V
LATCHUP	Latchup Performance Above V_{CC}	and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_{0} absolute maximum rating must be observed.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V_{IN}, $V_{\text {OUT }}$	DC Input Voltage, Output Voltage	(Referenced to GND) (Note 6)	0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	CLOCK Input Rise and Fall Time (Figure 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1000 \\ & 700 \\ & 500 \\ & 400 \end{aligned}$	ns

6. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{v} \end{gathered}$	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \text { Iout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	V
VIL	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \text { lout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IL }} \\ & \left\|l_{\text {OUT }}\right\| \leq 20 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \|\mathrm{IOUT}\| \leq 4.0 \mathrm{~mA} \\ & \mid \mathrm{lout}^{2} \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \text { lout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & .0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{IOUTO} \leq 4.0 \mathrm{~mA} \\ & \mid \text { lout } \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	
1 IN	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {OUT }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4.0	40	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \hline \mathrm{v}_{\mathrm{cc}} \\ \mathrm{v} \end{gathered}$	Guaranteed Limit			Unit
			$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50% Duty Cycle) (Figures 4 and 7)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 24 \\ & 28 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 20 \\ & 24 \end{aligned}$	MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Clock to Q (Figures 5 and 7)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	$\begin{gathered} 140 \\ 28 \\ 24 \end{gathered}$	$\begin{gathered} 165 \\ 33 \\ 28 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t} \text { tLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Reset to Q (Figures 2 and 7)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 110 \\ 21 \\ 19 \end{gathered}$	$\begin{gathered} 140 \\ 28 \\ 24 \end{gathered}$	$\begin{gathered} 160 \\ 32 \\ 27 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THLL}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 4 and 7)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance		10	10	10	pF

$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance, per Enabled Output	(Note 7)	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	pF
			62	

7. Used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2} \mathrm{f}+\mathrm{I}_{\mathrm{CC}} \mathrm{V}_{\mathrm{CC}}$.

TIMING REQUIREMENTS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	Figure	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{v} \end{gathered}$	Guaranteed Limit						Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		$\leq 85^{\circ} \mathrm{C}$		$\leq 125^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Data to Clock	6	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \\ & 9.0 \end{aligned}$		$\begin{aligned} & 65 \\ & 13 \\ & 11 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Data	6	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		ns
$\mathrm{trec}^{\text {c }}$	Minimum Recovery Time, Reset Inactive to Clock	5	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$		ns
t_{w}	Minimum Pulse Width, Clock	4	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	75 15 13		95 19 16		$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$		ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset	5	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$		ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times	4	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$		$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$		$\begin{aligned} & \hline 1000 \\ & 500 \\ & 400 \end{aligned}$		$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

Figure 3. Expanded Logic Diagram

Figure 4. Switching Waveform

Figure 6. Switching Waveform

Figure 5. Switching Waveform

*Includes all probe and jig capacitance

Figure 7. Test Circuit

MC74HC174A

PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE T

MC74HC174A

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD DIMENSIONSA
PROTRUSION.
4. MROXRUSION.
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
6. DIMENSION D DOES NOT INCLUDE DAMBAR

DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

MC74HC174A

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F-01
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (UN) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderli@@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV. 125 74AHC74D. 112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

