Dual Precision Monostable Multivibrator (Retriggerable, Resettable)

The MC74HC4538A is identical in pinout to the MC14538B. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

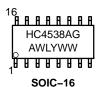
This dual monostable multivibrator may be triggered by either the positive or the negative edge of an input pulse, and produces a precision output pulse over a wide range of pulse widths. Because the device has conditioned trigger inputs, there are no trigger-input rise and fall time restrictions. The output pulse width is determined by the external timing components, Rx and Cx. The device has a reset function which forces the Q output low and the \overline{Q} output high, regardless of the state of the output pulse circuitry.

Features

- Unlimited Rise and Fall Times Allowed on the Trigger Inputs
- Output Pulse is Independent of the Trigger Pulse Width
- ± 10% Guaranteed Pulse Width Variation from Part to Part (Using the Same Test Jig)
- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 3.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard
- Chip Complexity: 145 FETs or 36 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com


SOIC-16 **D SUFFIX CASE 751B**

DT SUFFIX **CASE 948F**

PIN ASSIGNMENT

GND [1 ●	16	□ v _{cc}
C _X 1/R _X 1	2	15] GND
RESET 1	3	14	C _X 2/R _X 2
A1 [4	13	RESET 2
B1 [5	12] A2
Q1 [6	11] B2
Q1 [7	10] Q2
GND [8	9	<u> Q2</u>

MARKING DIAGRAMS

= Assembly Location

L, WL = Wafer Lot Y, YY = Year W. WW = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

FUNCTION TABLE

	Inputs		Outputs				
Reset	Α	В	Q				
H	_/ L	Η	T T				
H H	X H	L X	Not Triggered Not Triggered				
H	L,H, ∕ L	H L,H, ✓	Not Triggered Not Triggered				
\	X	X X	L H Not Triggered				

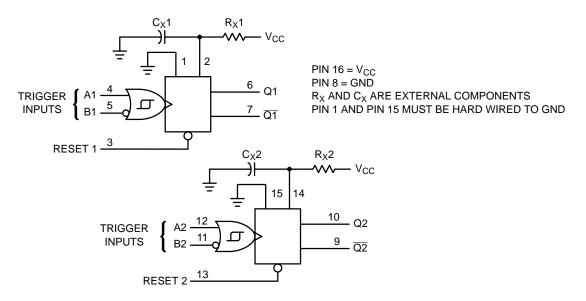


Figure 1. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC4538ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC4538ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV74HC4538ADR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74HC4538ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLVHC4538ADTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable

MAXIMUM RATINGS

Symbol	Pa	ırameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		$-0.5 \le V_{I} \le V_{CC} + 0.5$	V
Vo	DC Output Voltage	(Note 1)	$-0.5 \le V_{O} \le V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current	A, B, Reset C_X , R_X	±20 ±30	mA
I _{OK}	DC Output Diode Current		±25	mA
IO	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±100	mA
I _{GND}	DC Ground Current per Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead temperature, 1 mm from Case for	10 Seconds	260	°C
TJ	Junction temperature under Bias		+150	°C
θ_{JA}	Thermal resistance	SOIC TSSOP	112 148	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL-94-VO (0.125 in)	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 100 > 500	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Io absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GN	ID)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 6) A or B (Figure 4)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0 -	1000 500 400 No Limit	ns
R _x	External Timing Resistor	V _{CC} < 4.5 V V _{CC} ≥ 4.5 V	1.0 2.0	†	kΩ
C _x	External Timing Capacitor		0	†	μF

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

[†]The maximum allowable values of R_X and C_X are a function of the leakage of capacitor C_X , the leakage of the HC4538A, and leakage due to board layout and surface resistance. For most applications, C_X/R_X should be limited to a maximum value of 10 μ F/1.0 M Ω . Values of $C_X > 1.0 \mu$ F may cause a problem during power down (see Power Down Considerations). Susceptibility to externally induced noise signals may occur for $R_X > 1.0 M\Omega$.

^{6.} Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC CHARACTERISTICS

							Guara	nteed	Limits				
			V _{CC}	-5	5 to 25	°C		≤ 85 °C	;	5	≤ 125°(•	
Symbol	Parameter	Test Conditions	VCC	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Minimum High–Level Input Voltage	$V_{out} = 0.1 \text{ V or V}_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.5 3.15 4.2			1.5 3.15 4.2			1.5 3.15 4.2			V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0			0.5 1.35 1.8			0.5 1.35 1.8			0.5 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9			1.9 4.4 5.9			1.9 4.4 5.9			V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le -4.0 \text{ mA}$ $ I_{out} \le -5.2 \text{ mA}$	4.5 6.0	3.98 5.48			3.84 5.34			3.7 5.2			
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0			0.1 0.1 0.1			0.1 0.1 0.1			0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$	4.5 6.0			0.26 0.26			0.33 0.33			0.4 0.4	
l _{in}	Maximum Input Leakage Current (A, B, Reset)	V _{in} = V _{CC} or GND	6.0			±0.1			±1.0			±1.0	μΑ
l _{in}	Maximum Input Leakage Current (R _x , C _x)	V _{in} = V _{CC} or GND	6.0			± 50			±500			±500	nA
Icc	Maximum Quiescent Supply Current (per package) Standby State	$V_{in} = V_{CC}$ or GND Q1 and Q2 = Low $I_{out} = 0 \mu A$	6.0			130			220			350	μΑ
I _{CC}	Maximum Supply Current (per package)	$V_{in} = V_{CC}$ or GND Q1 and Q2 = High $I_{out} = 0 \mu A$		25°C		25°C –45°C to 85°C			–55°C to 125°C				
	Active State	Pins 2 and 14 = 0.5 V _{CC}	6.0		400			600				800	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$)

				G	uarante	ed Limit	s		
				–55 to 25°C		5°C	≤ 125°C		
Symbol	Parameter	V _{CC} V	Min	Max	Min	Max	Min	Max	Unit
t _{PLH}	Maximum Propagation Delay Input A or B to Q (Figures 5 and 7)	2.0 4.5 6.0		175 35 30		220 44 37		265 53 45	ns
t _{PHL}	Maximum Propagation Delay Input A or B to NQ (Figures 5 and 7)	2.0 4.5 6.0		195 39 33		245 49 42		295 59 50	ns
t _{PHL}	Maximum Propagation Delay Reset to Q (Figures 6 and 7)	2.0 4.5 6.0		175 35 30		220 44 37		265 53 45	ns
t _{PLH}	Maximum Propagation Delay Reset to NQ (Figures 6 and 7)	2.0 4.5 6.0		175 35 30		220 44 37		265 53 45	ns
t _{TLH,} t _{THL}	Maximum Output Transition Time, Any Output (Figures 6 and 7)	2.0 4.5 6.0		75 15 13		95 19 16		110 22 19	ns
C _{in}		_		10 25		10 25		10 25	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (per Multivibrator)*	150	pF

^{*}Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING CHARACTERISTICS (Input $t_r = t_f = 6.0 \text{ ns}$)

				G	uarante	ed Limit	s		
				–55 to 25°C		5°C	≤ 12	5°C	
Symbol	Parameter	V _{CC} V	Min	Max	Min	Max	Min	Max	Unit
t _{rr}	Minimum Retrigger Time, Input A or B (Figure 6) (Note 7)	2.0 4.5 6.0	- - -		- - -				ns
t _{rec}	Minimum Recovery Time, Inactive to A or B (Figure 6)	2.0 4.5 6.0	0 0 0		0 0 0		0 0 0		ns
t _w	Minimum Pulse Width, Input A or B (Figure 5)	2.0 4.5 6.0	60 12 10		75 15 13		90 18 15		ns
t _w	Minimum Pulse Width, Reset (Figure 6)	2.0 4.5 6.0	60 12 10		75 15 13		90 18 15		ns
t _r , t _f	Maximum Input Rise and Fall Times, Reset (Figure 6)	2.0 4.5 6.0		1000 500 400		1000 500 400		1000 500 400	ns
	A or B (Figure 6)	2.0 4.5 6.0		•	No L	₋imit			

7.
$$t_{rr}(ns) = \frac{V_{CC} (volts) \times C_x (pF)}{30.5}$$

OUTPUT PULSE WIDTH CHARACTERISTICS (Rx = 10 k Ω , Cx = 0.1 μ F, CL = 50 pF)

		Conditions		Guaranteed Limits						
			v _{cc}	–55 to 25°C		≤ 85 ° C		≤ 125°C		
Symbol	Parameter	Timing Components	V	Min	Max	Min	Max	Min	Max	Unit
	Output Pulse Width (Note 8) (Figures 5 and 6)			0.63	0.77	0.6	0.8	0.59	0.81	ms
τ	Pulse Width Match Between Circuits in the same Package	$R_X = 10 \text{ k}\Omega,$ $C_X = 0.1 \text{ μF}$	5.0			±5	.0			%
	Pulse Width Match Variation (Part to Part) (Note 10)					±1	0			%

OUTPUT PULSE WIDTH CHARACTERISTICS (Rx = 100 k Ω , Cx = 1 nF, CL = 50 pF)

		C	ıs	Guar	imits			
Symbol	Parameter	Timing Components	V _{CC}	Ambient Temperature	Min	Тур	Max	Unit
	Output Pulse Width (Note 9)			25°C	-	79	-	μS
τ	Pulse Width Match Between Circuits in the same Package			–55 to 125°C	-5.0	-	+5.0	%
	Pulse Width Match Variation (Part to Part) (Note 10)	$R_X = 100 \text{ k}\Omega,$ $C_X = 1 \text{ nF}$	5.0	–55 to 125°C	-10	-	+10	%
_	Temperature Variance			–55 to 125°C	_	+0.05	_	μs/°C
_	Power Supply Variance			–55 to 125°C	_	-8.0	_	μs/V

^{8.} $\tau = kR_xC_x$ and k = 0.7 for the output pulse width corresponding to $R_x = 10~k\Omega$, $C_x = 0.1~\mu F$. 9. $\tau = kR_xC_x$ and k = 0.79 for the output pulse width corresponding to $R_x = 100~k\Omega$, $C_x = 1~n F$. 10. Pulse width match variation between ICs (part–to–part) is defined with identical R_x , C_x , V_{CC} and a specific temperature.

TYPICAL CHARACTERISTICS

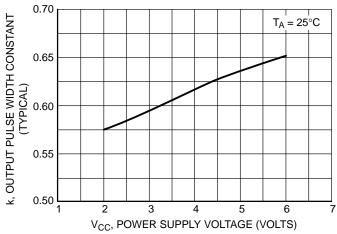


Figure 2. Typical Output Pulse Width Constant, k, versus Supply Voltage (For output pulse widths $> 100 \ \mu s$: $\tau = kR_xC_x$)

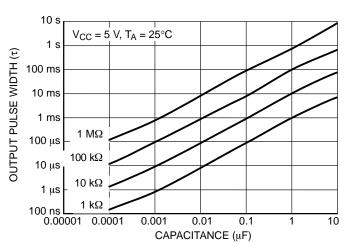


Figure 3. Output Pulse Width versus Timing Capacitance

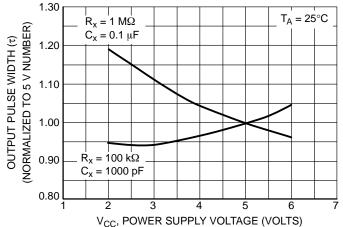


Figure 4. Normalized Output Pulse Width versus Power Supply Voltage

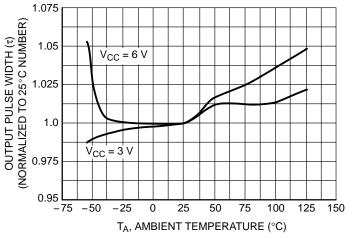


Figure 5. Normalized Output Pulse Width versus Power Supply Voltage

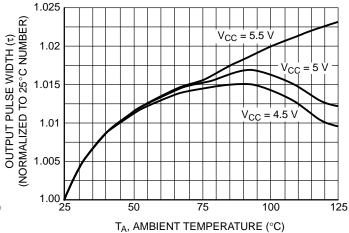


Figure 6. Normalized Output Pulse Width versus Power Supply Voltage

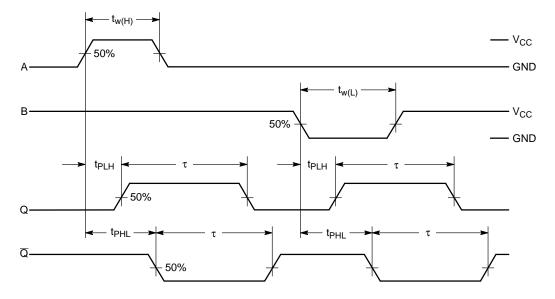


Figure 7. Switching Waveform

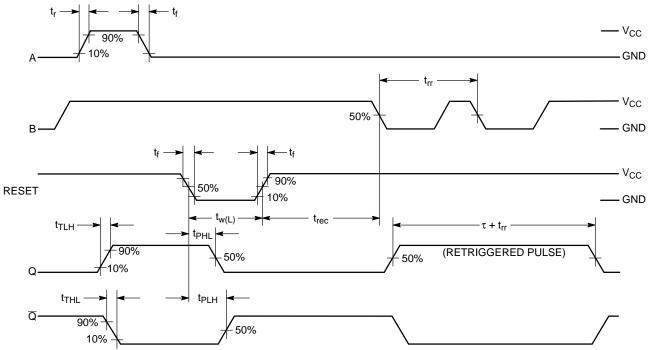
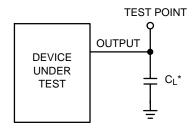



Figure 8. Switching Waveform

*Includes all probe and jig capacitance

Figure 9. Test Circuit

PIN DESCRIPTIONS

INPUTS

A1, A2 (Pins 4, 12)

Positive–edge trigger inputs. A rising–edge signal on either of these pins triggers the corresponding multivibrator when there is a high level on the B1 or B2 input.

B1, B2 (Pins 5, 11)

Negative—edge trigger inputs. A falling—edge signal on either of these pins triggers the corresponding multivibrator when there is a low level on the A1 or A2 input.

Reset 1, Reset 2 (Pins 3, 13)

Reset inputs (active low). When a low level is applied to one of these pins, the Q output of the corresponding multivibrator is reset to a low level and the \overline{Q} output is set to a high level.

$C_X 1/R_X 1$ and $C_X 2/R_X 2$ (Pins 2 and 14)

External timing components. These pins are tied to the common points of the external timing resistors and

capacitors (see the Block Diagram). Polystyrene capacitors are recommended for optimum pulse width control. Electrolytic capacitors are not recommended due to high leakages associated with these type capacitors.

GND (Pins 1 and 15)

External ground. The external timing capacitors discharge to ground through these pins.

OUTPUTS

Q1, Q2 (Pins 6, 10)

Noninverted monostable outputs. These pins (normally low) pulse high when the multivibrator is triggered at either the A or the B input. The width of the pulse is determined by the external timing components, R_X and C_X .

Q1, Q2 (Pins 7, 9)

Inverted monostable outputs. These pins (normally high) pulse low when the multivibrator is triggered at either the A or the B input. These outputs are the inverse of Q1 and Q2.

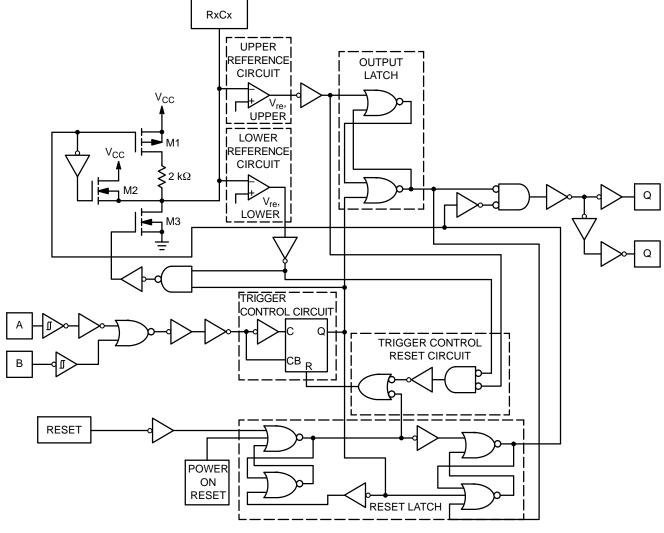


Figure 10. Logic Detail (1/2 the Device)

CIRCUIT OPERATION

Figure 11 shows the HC4538A configured in the retriggerable mode. Briefly, the device operates as follows (refer to Figure 10): In the quiescent state, the external timing capacitor, C_x , is charged to V_{CC} . When a trigger occurs, the Q output goes high and C_x discharges quickly to the lower reference voltage (V_{ref} Lower $\approx 1/3$ V_{CC}). C_x then charges, through R_x , back up to the upper reference voltage (V_{ref} Upper $\approx 2/3$ V_{CC}), at which point the one–shot has timed out and the Q output goes low.

The following, more detailed description of the circuit operation refers to both the logic detail (Figure 10) and the timing diagram (Figure 11).

QUIESCENT STATE

In the quiescent state, before an input trigger appears, the output latch is high and the reset latch is high (#1 in Figure 11). Thus the Q output (pin 6 or 10) of the monostable multivibrator is low (#2, Figure 11).

The output of the trigger–control circuit is low (#3), and transistors M1, M2, and M3 are turned off. The external timing capacitor, C_x , is charged to V_{CC} (#4), and both the upper and lower reference circuit has a low output (#5).

In addition, the output of the trigger-control reset circuit is low.

TRIGGER OPERATION

The HC4538A is triggered by either a rising–edge signal at input A (#7) or a falling–edge signal at input B (#8), with the unused trigger input and the Reset input held at the voltage levels shown in the Function Table. Either trigger signal will cause the output of the trigger–control circuit to go high (#9).

The trigger–control circuit going high simultaneously initiates two events. First, the output latch goes low, thus taking the Q output of the HC4538A to a high state (#10). Second, transistor M3 is turned on, which allows the external timing capacitor, C_x , to rapidly discharge toward ground (#11). (Note that the voltage across C_x appears at the input of both the upper and lower reference circuit comparator).

When C_x discharges to the reference voltage of the lower reference circuit (#12), the outputs of both reference circuits will be high (#13). The trigger–control reset circuit goes high, resetting the trigger–control circuit flip–flop to a low state (#14). This turns transistor M3 off again, allowing C_x to begin to charge back up toward V_{CC} , with a time constant $t = R_x C_x$ (#15). Once the voltage across C_x charges to above the lower reference voltage, the lower reference circuit will go low allowing the monostable multivibrator to be retriggered.

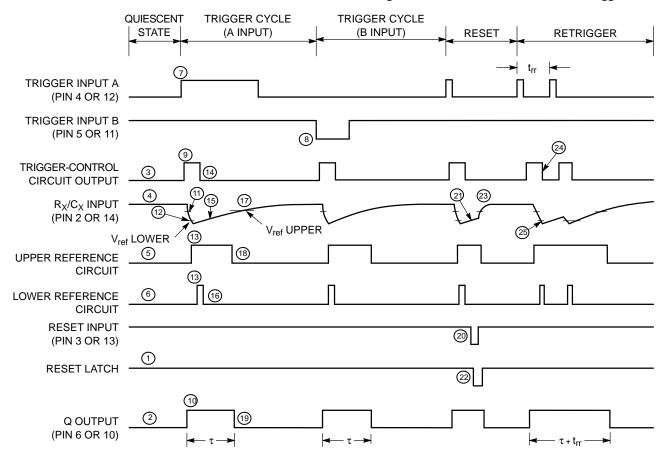


Figure 11. Timing Diagram

When C_x charges up to the reference voltage of the upper reference circuit (#17), the output of the upper reference circuit goes low (#18). This causes the output latch to toggle, taking the Q output of the HC4538A to a low state (#19), and completing the time—out cycle.

POWER-DOWN CONSIDERATIONS

Large values of C_x may cause problems when powering down the HC4538A because of the amount of energy stored in the capacitor. When a system containing this device is powered down, the capacitor may discharge from V_{CC} through the input protection diodes at pin 2 or pin 14. Current through the protection diodes must be limited to 30 mA; therefore, the turn–off time of the V_{CC} power supply must not be faster than $t = V_{CC} \cdot C_x/(30 \text{ mA})$. For example, if $V_{CC} = 5.0 \text{ V}$ and $C_x = 15 \,\mu\text{F}$, the V_{CC} supply must turn off no faster than $t = (5.0 \text{ V}) \cdot (15 \,\mu\text{F})/30 \text{ mA} = 2.5 \text{ ms}$. This is usually not a problem because power supplies are heavily filtered and cannot discharge at this rate.

When a more rapid decrease of V_{CC} to zero volts occurs, the HC4538A may sustain damage. To avoid this possibility, use an external damping diode, D_x , connected as shown in Figure 12. Best results can be achieved if diode D_x is chosen to be a germanium or Schottky type diode able to withstand large current surges.

RESET AND POWER ON RESET OPERATION

A low voltage applied to the Reset pin always forces the Q output of the HC4538A to a low state.

The timing diagram illustrates the case in which reset occurs (#20) while C_x is charging up toward the reference voltage of the upper reference circuit (#21). When a reset

occurs, the output of the reset latch goes low (#22), turning on transistor M1. Thus C_x is allowed to quickly charge up to V_{CC} (#23) to await the next trigger signal.

On power up of the HC4538A the power—on reset circuit will be high causing a reset condition. This will prevent the trigger—control circuit from accepting a trigger input during this state. The HC4538A's Q outputs are low and the \overline{Q} not outputs are high.

RETRIGGER OPERATION

When used in the retriggerable mode (Figure 13), the HC4538A may be retriggered during timing out of the output pulse at any time after the trigger—control circuit flip—flop has been reset (#24), and the voltage across C_x is above the lower reference voltage. As long as the C_x voltage is below the lower reference voltage, the reset of the flip—flop is high, disabling any trigger pulse. This prevents M3 from turning on during this period resulting in an output pulse width that is predictable.

The amount of undershoot voltage on R_xC_x during the trigger mode is a function of loop delay, M3 conductivity, and V_{DD} . Minimum retrigger time, trr (Figure 7), is a function of 1) time to discharge R_xC_x from V_{DD} to lower reference voltage ($T_{discharge}$); 2) loop delay (T_{delay}); 3) time to charge R_xC_x from the undershoot voltage back to the lower reference voltage (T_{charge}).

Figure 14 shows the device configured in the non-retriggerable mode.

For additional information, please see Application Note (AN1558/D) titled *Characterization of Retrigger Time in the HC4538A Dual Precision Monostable Multivibrator.*

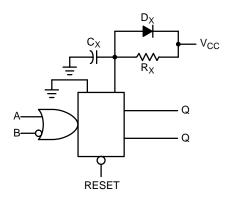
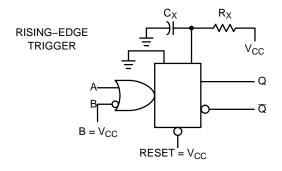
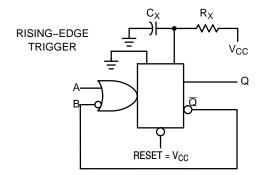
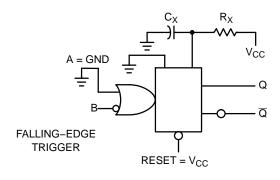





Figure 12. Discharge Protection During Power Down

TYPICAL APPLICATIONS

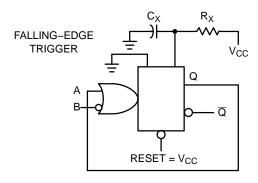


Figure 13. Retriggerable Monostable Circuitry

Figure 14. Non-retriggerable Monostable Circuitry

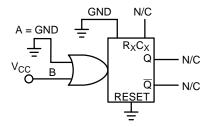
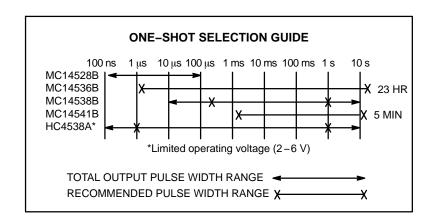
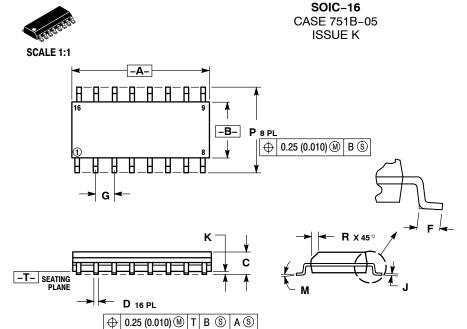




Figure 15. Connection of Unused Section

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE DIMENSION AND POLITIAN OF THE ANSI'S Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

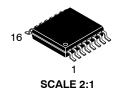
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

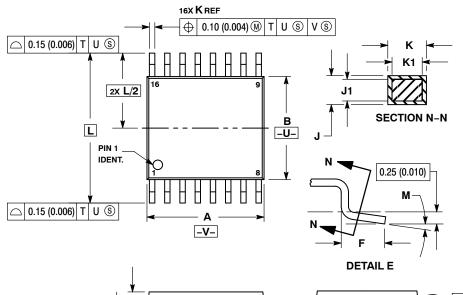
	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
7	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.		PIN 1.		PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	E #1	
2.			ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.		7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR			8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.		11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.		12.			
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEDING	FOOTPRINT
14.	COLLECTOR		NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDENING	FOOTFRINT
15.	EMITTER		ANODE	15.	EMITTER, #4	15.	BASE, #1	:	8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	6	.40
								-	0
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 ← ➤
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				,
2.	DRAIN. #1		CATHODE	2.	COMMON DRAIN (OUTPUT	1		. 🗀 1	16
3.	DRAIN, #2		CATHODE	3.	COMMON DRAIN (OUTPUT			↓ — ·	· · ·
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,		<u>-</u>	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT	1	16	6X 🛧 🖳	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT			58 ^J 🖂	' <u> </u>
7.	DRAIN, #4	7.		7.	COMMON DRAIN (OUTPUT		0.	56	ı
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH `	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT				
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT	ń			
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)			PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u> </u>
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH				
	*							□ 8	9 + - + -
								<u> </u>	ı
									DIMENSIONS MILLIMETERS
									DIMENSIONS: MILLIMETERS


DOCUMENT NUMBER: 98ASB42566B		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

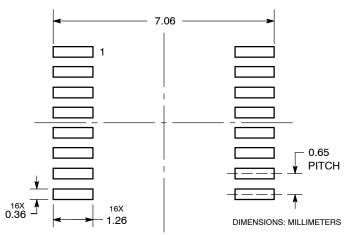
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
M	0°	° 8° 0° 8		8 °	

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	the Document Repository. COPY" in red.	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Monostable Multi-vibrator category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NLV74HC4538ADR2G NTE4528B TC74HC4538AP(F) JM38510/31401B2A CD74HC123E 74HC123D.653 74VHC221AFT(BJ)

NTE74123 74HC4538DB.112 74HC123DB.112 74HCT4538D.112 74HCT4538PW.112 74LV123PW.112 LTC6993CDCB-3#TRMPBF

LTC6993IDCB-4#TRMPBF LTC6993IDCB-1#TRMPBF 74VHC123AM 74VHC123AMX 74HC4538D(BJ) 74HC4538D NTE4047BT

NTE4528BT NTE4047B NTE4098B NTE74LS122 74AHC123AD,112 74AHC123AD,118 74AHC123AD-Q100J 74AHC123APW,118

74AHCT123APW,118 74HC123D,652 74HC123D,653 74HC123DB,112 74HC123PW,112 74HC123PW,118 74HC423D 74HCT123D

74HC423BQ,115 74HC423D,652 74HC4538D,652 74HC4538D,653 74HCT123D,652 74HCT123D,653 74LV123BQ,115 74LV123D,118

74LVC1G123DC,125 HEF4047BT,652 HEF4047BT,653 74VHC123AMTCX 74VHC123ASJX