Analog Multiplexers / Demultiplexers with LSTTL Compatible Inputs

High-Performance Silicon-Gate CMOS

The MC74HCT4051A, MC74HCT4052A and MC74HCT4053A utilize silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/demultiplexers control analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}).

The HCT4051A, HCT4052A and HCT4053A are identical in pinout to the metal-gate MC14051AB, MC14052AB and MC14053AB. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

The Channel-Select and Enable inputs are compatible with standard CMOS and LSTTL outputs.

These devices have been designed so that the ON resistance (R_{on}) is more linear over input voltage than R_{on} of metal-gate CMOS analog switches.

For a multiplexer/demultiplexer with injection current protection, see HC4851A and HCT4851A.

Features

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Analog Power Supply Range $(V_{CC} V_{EE}) = 2.0$ to 12.0 V
- Digital (Control) Power Supply Range (V_{CC} GND) = 2.0 to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal–Gate Counterparts
- Low Noise
- In Compliance with the Requirements of JEDEC Standard No. 7 A
- Chip Complexity: HCT4051A 184 FETs or 46 Equivalent Gates
 HCT4052A 168 FETs or 42 Equivalent Gates
 HCT4053A 156 FETs or 39 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

= 1, 2, 3

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

X0 13 14 X1 X2¹⁵ 3 X COMMON OUTPUT/ ANALOG INPUTS/ OUTPUTS 12 MULTIPLEXER/ Х3-**INPUT** DEMULTIPLEXER Χ4· Х5-11 B 10 CHANNEL SELECT 9 INPUTS C-**ENABLE** PIN 16 = V_{CC} PIN 7 = V_{EE} PIN 8 = GND

Figure 1. Logic Diagram – MC74HCT4051A Single-Pole, 8-Position Plus Common Off

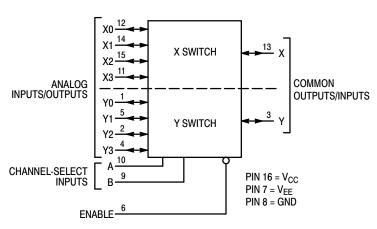


Figure 3. Logic Diagram – MC74HCT4052A Double-Pole, 4-Position Plus Common Off

FUNCTION TABLE - MC74HCT4051A

Contr	ol Inp			
	- ;	Selec	t	
Enable	С	В	Α	ON Channels
L	L	L	L	X0
L	L	L	Н	X1
L	L	Н	L	X2
L	L	Н	Н	X3
L	Н	L	L	X4
L	Н	L	Н	X5
L	Н	Н	L	X6
L	Н	Н	Н	X7
Н	X	Х	Χ	NONE

X = Don't Care

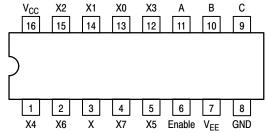


Figure 2. Pinout: MC74HCT4051A (Top View)

FUNCTION TABLE - MC74HCT4052A

Contr	ol Input	s			
Enable	Select Enable B A			annels	
L	L	L	Y0	X0	
L	L	Н	Y1	X1	
L	Н	L	Y2	X2	
L	Н	Н	Y3	X3	
Н	Х	Х	NONE		

X = Don't Care

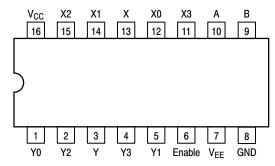


Figure 4. Pinout: MC74HCT4052A (Top View)

X SWITCH 13 COMMON **ANALOG** Y SWITCH OUTPUTS/INPUTS INPUTS/OUTPUTS Z SWITCH 3 11 A PIN 16 = V_{CC} **CHANNEL-SELECT** 10 В **INPUTS** PIN 7 = V_{EE} 9 PIN 8 = GND **ENABLE**

NOTE: This device allows independent control of each switch. Channel–Select Input A controls the X–Switch, Input B controls the Y–Switch and Input C controls the Z–Switch

Figure 5. Logic Diagram – MC74HCT4053A
Triple Single-Pole, Double-Position Plus Common Off

FUNCTION TABLE - MC74HCT4053A

Cont	Control Inputs					
Enable	C	Selec B	t A	10	l Chann	els
L	L	L	L	Z0	Y0	X0
L	L	L	Н	Z0	Y0	X1
L	L	Н	L	Z0	Y1	X0
L	L	Н	Н	Z0	Y1	X1
L	Н	L	L	Z1	Y0	X0
L	Н	L	Н	Z1	Y0	X1
L	Н	Н	L	Z1 Y1 X0		
L	Н	Н	Н	Z1 Y1 X1		
Н	X	Χ	X		NONE	

X = Don't Care

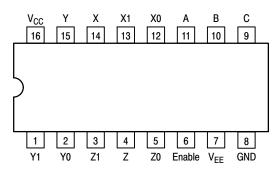


Figure 6. Pinout: MC74HCT4053A (Top View)

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND) (Referenced to V _{EE})	-0.5 to +7.0 -0.5 to +14.0	V
V _{EE}	Negative DC Supply Voltage (Referenced to GND)	-7.0 to +5.0	V
V _{IS}	Analog Input Voltage	V _{EE} – 0.5 to V _{CC} + 0.5	٧
V _{in}	Digital Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
I	DC Current, Into or Out of Any Pin	±25	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating – SOIC Package: – 7 mW/°C from 65°C to 125°C TSSOP Package: – 6.1 mW/°C from 65°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	11,	renced to GND) erenced to V _{EE})	2.0 2.0	6.0 12.0	V
V _{EE}	Negative DC Supply Voltage, Output (GND)	-6.0	GND	٧	
V _{IS}	Analog Input Voltage		V _{EE}	V _{CC}	V
V _{in}	Digital Input Voltage (Referenced to G	iND)	GND	V _{CC}	V
V _{IO} *	Static or Dynamic Voltage Across Swi	tch		1.2	V
T _A	Operating Temperature Range, All Pa	ckage Types	-55	+125	°C
t _r , t _f	Input Rise/Fall Time (Channel Select or Enable Inputs)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 600 500 400	ns

^{*}For voltage drops across switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND) V_{EE} = GND, Except Where Noted

			V _{CC}	Guara	nteed Lim	nit	
Symbol	Parameter	Condition	v	−55 to 25°C	≤ 85 °C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs	R _{on} = Per Spec	4.5 to 5.5	2.0	2.0	2.0	V
V _{IL}	Maximum Low-Level Input Voltage, Channel-Select or Enable Inputs	R _{on} = Per Spec	4.5 to 5.5	0.8	0.8	0.8	V
I _{in}	Maximum Input Leakage Current, Channel–Select or Enable Inputs	$V_{in} = V_{CC}$ or GND, $V_{EE} = -6.0 \text{ V}$	6.0	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)		6.0 6.0	1 4	10 40	20 80	μΑ

DC CHARACTERISTICS - Analog Section

					Guaranteed Limit			
Symbol	Parameter	Condition	V _{CC}	V _{EE}	-55 to 25°C	≤ 85°C	≤125°C	Unit
R _{on}	Maximum "ON" Resistance	$V_{in} = V_{IL}$ or V_{IH} ; $V_{IS} = V_{CC}$ to V_{EE} ; $I_S \le 2.0$ mA (Figures 7, 8)	4.5 4.5 6.0	0.0 -4.5 -6.0	190 120 100	240 150 125	280 170 140	Ω
		$\begin{aligned} &V_{in} = V_{IL} \text{ or } V_{IH}; \ V_{IS} = V_{CC} \text{ or } \\ &V_{EE} \text{ (Endpoints); } I_{S} \leq 2.0 \text{ mA} \\ &\text{(Figures 7, 8)} \end{aligned}$	4.5 4.5 6.0	0.0 -4.5 -6.0	150 100 80	190 125 100	230 140 115	
ΔR_{on}	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{split} &V_{in} = V_{IL} \text{ or } V_{IH}; \\ &V_{IS} = 1/2 (V_{CC} - V_{EE}); \\ &I_S \leq 2.0 \text{ mA} \end{split}$	4.5 4.5 6.0	0.0 -4.5 -6.0	30 12 10	35 15 12	40 18 14	Ω
I _{off}	Maximum Off-Channel Leakage Current, Any One Channel	$V_{in} = V_{IL} \text{ or } V_{IH};$ $V_{IO} = V_{CC} - V_{EE};$ Switch Off (Figure 9)	5.0	-5.0	0.1	0.5	1.0	μΑ
	Maximum Off-Channel HCT4051A Leakage Current, HCT4052A Common Channel HCT4053A	$V_{in} = V_{IL} \text{ or } V_{IH};$ $V_{IO} = V_{CC} - V_{EE};$ Switch Off (Figure 10)	5.0 5.0 5.0	-5.0 -5.0 -5.0	0.2 0.1 0.1	2.0 1.0 1.0	4.0 2.0 2.0	
I _{on}	Maximum On-Channel HCT4051A Leakage Current, HCT4052A Channel-to-Channel HCT4053A	V _{in} = V _{IL} or V _{IH} ; Switch-to-Switch = V _{CC} - V _{EE} ; (Figure 11)	5.0 5.0 5.0	-5.0 -5.0 -5.0	0.2 0.1 0.1	2.0 1.0 1.0	4.0 2.0 2.0	μΑ

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			V _{CC}	Guara	nteed Lin	nit	
Symbol	Paran	neter	v	-55 to 25°C	≤ 85 °C	≤125°C	Unit
t _{PLH} ,	Maximum Propagation Delay, Channe	el-Select to Analog Output	2.0	270	320	350	ns
t _{PHL}	(Figure 15)		3.0	90	110	125	
			4.5	59	79	85	
			6.0	45	65	75	
t _{PLH} ,	Maximum Propagation Delay, Analog	Input to Analog Output	2.0	40	60	70	ns
t _{PHL}	(Figure 16)		3.0	25	30	32	
			4.5	12	15	18	
			6.0	10	13	15	
t_{PLZ} ,	Maximum Propagation Delay, Enable	to Analog Output	2.0	160	200	220	ns
t _{PHZ}	(Figure 17)		3.0	70	95	110	
			4.5	48	63	76	
			6.0	39	55	63	
t _{PZL} ,	Maximum Propagation Delay, Enable	to Analog Output	2.0	245	315	345	ns
t _{PZH}	(Figure 17)	- '	3.0	115	145	155	
	,		4.5	49	69	83	
			6.0	39	58	67	
C _{in}	Maximum Input Capacitance, Channe	I-Select or Enable Inputs		10	10	10	pF
C _{I/O}	Maximum Capacitance	Analog I/O		35	35	35	pF
	(All Switches Off)	Common O/I: HCT4051A		130	130	130	
	,	HCT4052A		80	80	80	
		HCT4053A		50	50	50	
		Feed-through		1.0	1.0	1.0	

			Typical @ 25°C, V _{CC} = 5.0 V, V _{EE} = 0 V	
C _{PD}	Power Dissipation Capacitance (Figure 19)*	HCT4051A HCT4052A HCT4053A	45 80 45	pF

^{*}Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

			Vcc	V _{CC} V _{EE}		Limit*	•	
Symbol	Parameter	Condition	V V			25°C		Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 12)	f_{in} = 1 MHz Sine Wave; Adjust f_{in} Voltage to Obtain 0 dBm at V _{OS} ; Increase f_{in} Frequency Until dB Meter Reads –3 dB; R_I = 50 Ω , C_I = 10 pF	2.25 4.50	-2.25 -4.50	'51 80 80	'52 95 95	'53 120 120	MHz
		TIL	6.00	-6.00	80	95	120	
-	Off-Channel Feed-through Isolation (Figure 13)	f_{in} = Sine Wave; Adjust f_{in} Voltage to Obtain 0 dBm at V_{IS} f_{in} = 10 kHz, R_L = 600 Ω , C_L = 50 pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-50 -50 -50		dB
		f_{in} = 1.0 MHz, R_L = 50 Ω , C_L = 10 pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-40 -40 -40		
_	Feedthrough Noise. Channel-Select Input to Common I/O (Figure 14)	$\begin{split} &V_{in} \leq 1 \text{ MHz Square Wave } (t_r = t_f = 6 \text{ ns}); \\ &\text{Adjust R}_L \text{ at Setup so that } I_S = 0 \text{ A}; \\ &\text{Enable} = \text{GND} R_L = 600 \ \Omega, C_L = 50 \text{ pF} \end{split}$	2.25 4.50 6.00	-2.25 -4.50 -6.00		25 105 135		mV _{PP}
		R_L = 10 kΩ, C_L = 10 pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		35 145 190		
-	Crosstalk Between Any Two Switches (Figure 18) (Test does not apply to HCT4051A)	f_{in} = Sine Wave; Adjust f_{in} Voltage to Obtain 0 dBm at V_{IS} f_{in} = 10 kHz, R_L = 600 Ω , C_L = 50 pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-50 -50 -50		dB
		f_{in} = 1.0 MHz, R_L = 50 Ω , C_L = 10 pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-60 -60 -60		
THD	Total Harmonic Distortion (Figure 20)	f_{in} = 1 kHz, R _L = 10 k Ω , C _L = 50 pF THD = THD _{measured} – THD _{source} V _{IS} = 4.0 V _{PP} sine wave V _{IS} = 8.0 V _{PP} sine wave V _{IS} = 11.0 V _{PP} sine wave	2.25 4.50 6.00	-2.25 -4.50 -6.00		0.10 0.08 0.05		%

^{*}Limits not tested. Determined by design and verified by qualification.

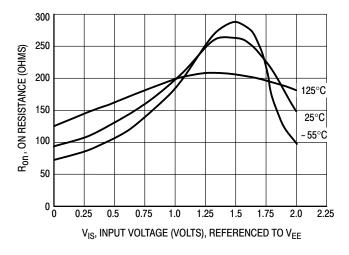
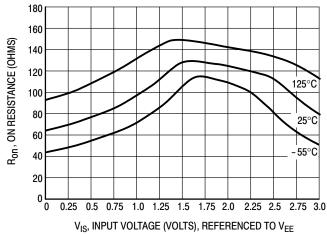
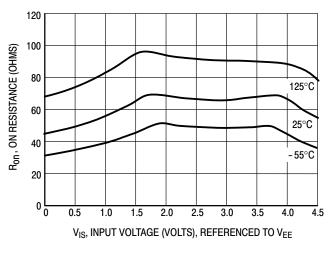
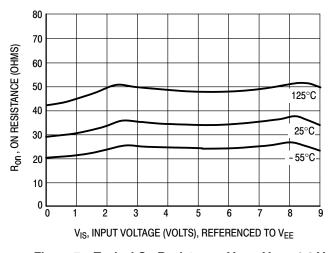


Figure 7a. Typical On Resistance, V_{CC} – V_{EE} = 2.0 V


Figure 7b. Typical On Resistance, V_{CC} – V_{EE} = 3.0 V

90 75 60 45 45 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 V_{IS}, INPUT VOLTAGE (VOLTS), REFERENCED TO V_{EE}

Figure 7c. Typical On Resistance, V_{CC} – V_{EE} = 4.5 V

Figure 7d. Typical On Resistance, $V_{CC} - V_{EE} = 6.0 \text{ V}$

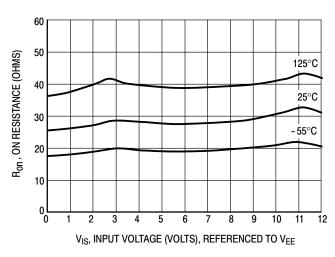


Figure 7e. Typical On Resistance, V_{CC} – V_{EE} = 9.0 V

Figure 7f. Typical On Resistance, V_{CC} – V_{EE} = 12.0 V

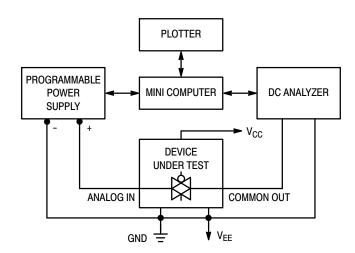


Figure 8. On Resistance Test Set-Up

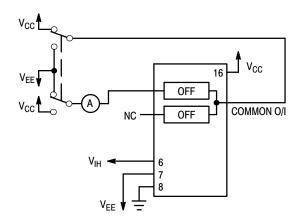


Figure 9. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

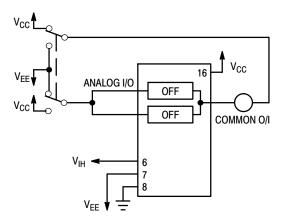


Figure 10. Maximum Off Channel Leakage Current, Common Channel, Test Set-Up

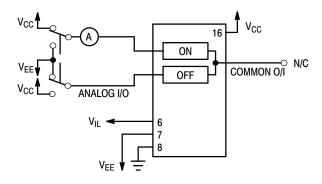


Figure 11. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

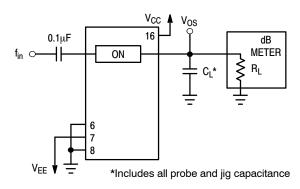
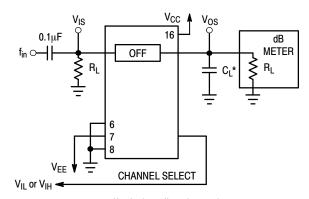
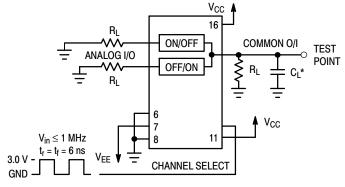




Figure 12. Maximum On Channel Bandwidth, Test Set-Up

*Includes all probe and jig capacitance

Figure 13. Off Channel Feedthrough Isolation, Test Set-Up

*Includes all probe and jig capacitance

Figure 14. Feedthrough Noise, Channel Select to Common Out, Test Set-Up

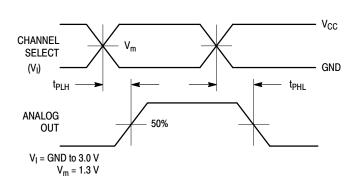
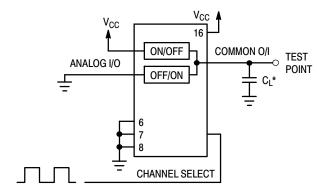



Figure 15a. Propagation Delays, Channel Select to Analog Out

*Includes all probe and jig capacitance

Figure 15b. Propagation Delay, Test Set-Up Channel Select to Analog Out

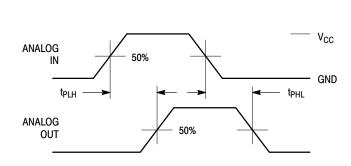
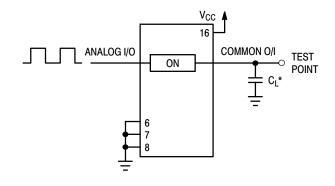



Figure 16a. Propagation Delays, Analog In to Analog Out

*Includes all probe and jig capacitance

Figure 16b. Propagation Delay, Test Set-Up
Analog In to Analog Out

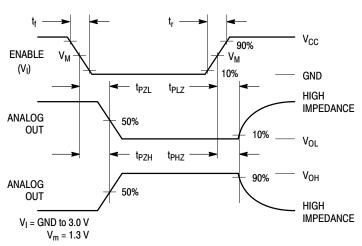


Figure 17a. Propagation Delays, Enable to Analog Out

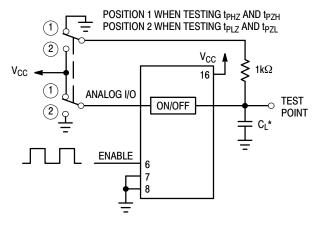


Figure 17b. Propagation Delay, Test Set-Up
Enable to Analog Out

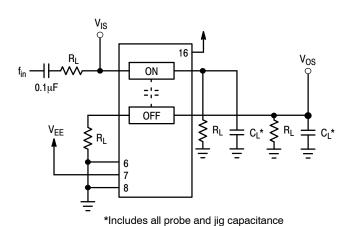


Figure 18. Crosstalk Between Any Two

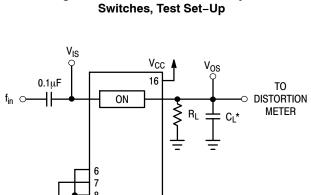


Figure 20a. Total Harmonic Distortion, Test Set-Up

*Includes all probe and jig capacitance

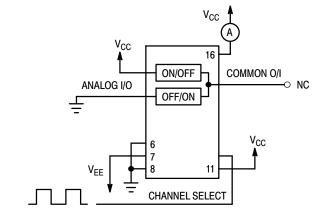


Figure 19. Power Dissipation Capacitance, Test Set-Up

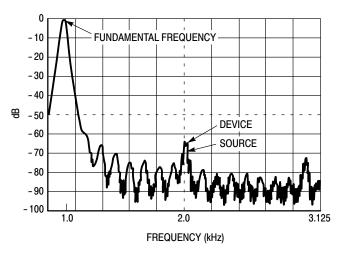


Figure 20b. Plot, Harmonic Distortion

APPLICATIONS INFORMATION

The maximum analog voltage swings are determined by the supply voltages V_{CC} and V_{EE} . The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below V_{EE} . In this example, the difference between V_{CC} and V_{EE} is ten volts. Therefore, using the configuration of Figure 21, a maximum analog signal of ten volts peak—to—peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feed—through noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$\begin{split} V_{CC} - GND &= 2 \text{ to } 6 \text{ V} \\ V_{EE} - GND &= 0 \text{ to } -6 \text{ V} \\ V_{CC} - V_{EE} &= 2 \text{ to } 12 \text{ V} \\ \text{and } V_{EE} &\leq GND \end{split}$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes (D_x) are recommended as shown in Figure 22. These diodes should be able to absorb the maximum anticipated current surges during clipping.

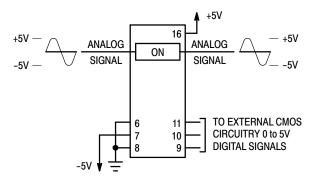


Figure 21. Application Example

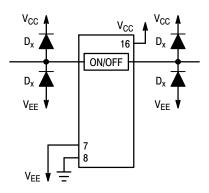
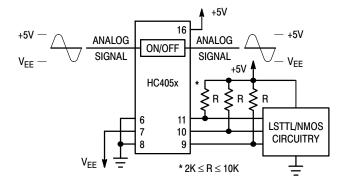
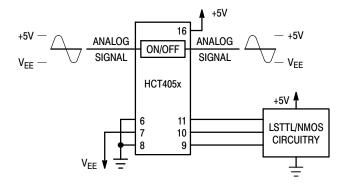
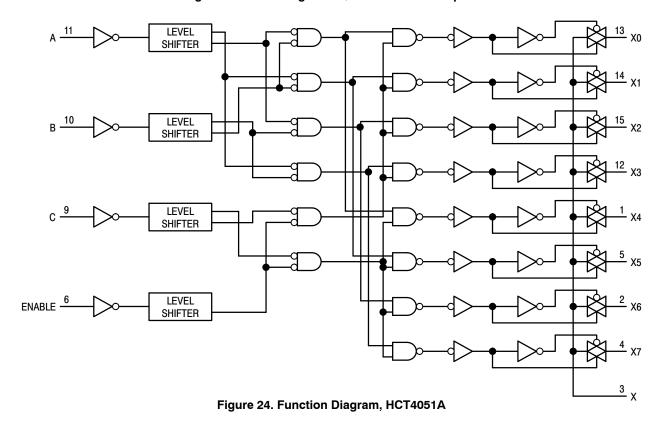




Figure 22. External Germanium or Schottky Clipping Diodes



a. Using Pull-Up Resistors with a HC Device

b. Using HCT Interface

Figure 23. Interfacing LSTTL/NMOS to CMOS Inputs

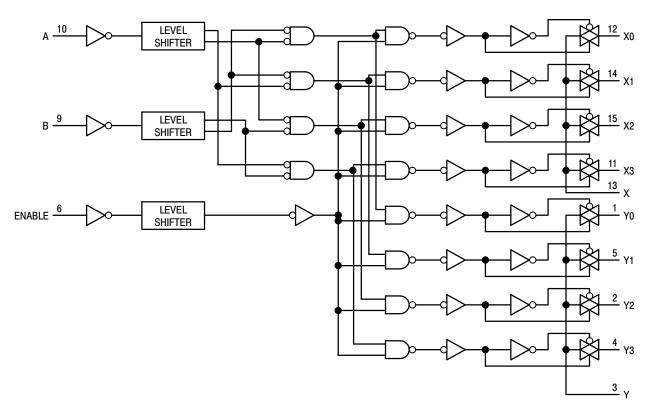


Figure 26. Function Diagram, HCT4052A

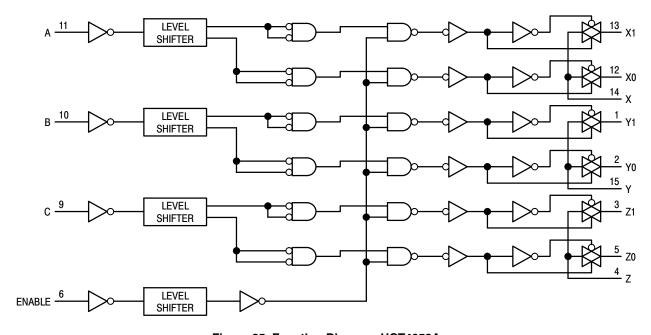
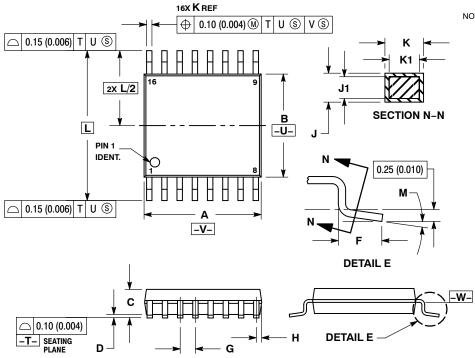


Figure 25. Function Diagram, HCT4053A

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HCT4051ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT4051ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74HCT4051ADTG	TSSOP-16 (Pb-Free)	96 Units / Rail
M74HCT4051ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV74HCT4051ADTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
MC74HCT4052ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
M74HCT4052ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
MC74HCT4053ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
M74HCT4053ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

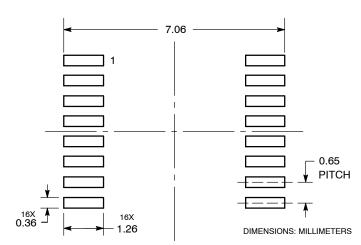
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX** CASE 948F **ISSUE B**

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- ANSI Y14-3M, 1982.


 CONTROLLING DIMENSION: MILLIMETER.

 JUMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- MOLD FLASH OH GATE BUHHS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE
- DAMBAR PROTRUSION. ALLOWAGE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

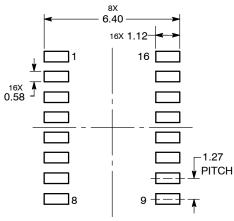
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0°	8 °	0 °	8 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-16 D SUFFIX CASE 751B-05 ISSUE K



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 VIA EM 1092
 - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBÁR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0 °	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor newsen to warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemni

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

M74HCT4066ADTR2G ADG506ATE/883B DG406BDN-T1-E3 JM38510/19004BXA HEF4051BP 5962-8512704XA

NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G JM38510/19002BXA 016400E ADV3014KSTZ PI3V512QE FSA644UCX

FSA9591UCX FSSD07BQX MAX7356ETG NLV74HCT4851ADRG 7705201EC MAX7358ETG+T MAX4634ETBT MAX4578CAP+

PI2SSD3212NCE MAX3997ETM+ NLV14052BDTR2G PI3L100QE PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+

PI3DBS12212AZBEX PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G

NLVAST4051DTR2G PI3DBS12412AZHEX ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ
RL7 ADG5208FBRUZ-RL7 MAX14984ETG+ MAX14984ETG+T HV2818/R4X HV2918/R4X CBTU02044HEJ PS508LEX