MC74LCX245

Low-Voltage CMOS Octal Transceiver

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX245 is a high performance, non-inverting octal transceiver operating from a 2.0 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX245 inputs to be safely driven from 5 V devices if V_{CC} is less than 5.0 V . The MC74LCX245 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Current drive capability is 24 mA at both A and B ports. The Transmit/Receive ($\mathrm{T} / \overline{\mathrm{R}}$) input determines the direction of data flow through the bi-directional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

Features

- Designed for 2.0 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5 V Tolerant - Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- $\mathrm{I}_{\mathrm{OFF}}$ Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 $\mu \mathrm{A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

[^0]

Figure 1. Pinout (Top View)

PIN NAMES

PINS	FUNCTION
$\overline{O E}$	Output Enable Input
T/R	Transmit/Receive Input
AO-A7	Side A 3-State Inputs or 3-State Outputs
B0-B7	Side B 3-State Inputs or 3-StateOutputs

TRUTH TABLE

INPUTS		OPERATING MODE Non-Inverting
OE	T / R	
L	L	A Data to B Bus
L	H	Z
H	X	

H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
X = High or Low Voltage Level and Transitions are Acceptable For ICC reasons, Do Not Float Inputs

Figure 2. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Output in HIGH or LOW State (Note 1$)$	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current Per Supply Pin	± 100	mA	
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current Per Ground Pin	± 100	mA	
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_{0} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {cc }}$	Supply VoltageOperating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.5,3.3 \\ & 2.5,3.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 55 \end{aligned}$	V
V_{1}	Input Voltage	0		5.5	V
V_{O}	Output Voltage (HIGH or LOW State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
${ }^{\text {OH }}$	HIGH Level Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$			$\begin{gathered} -24 \\ -12 \\ -8 \end{gathered}$	mA
${ }_{\mathrm{OL}}$	LOW Level Output Current $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$			$\begin{gathered} +24 \\ +12 \\ +8 \end{gathered}$	mA
T_{A}	Operating Free-Air Temperature	-55		+125	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns / V

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 2)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$	1.7		V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage (Note 2)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$		0.7	V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	
V_{OH}	HIGH Level Output Voltage	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
V_{OL}	LOW Level Output Voltage	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOL}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOL}=24 \mathrm{~mA}$		0.55	
I_{OZ}	3-State Output Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ \mathrm{~V}_{\text {OUT }}=0 \text { to } 5.5 \mathrm{~V} \end{gathered}$		± 5	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\text {CC }}=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
I_{IN}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		± 5	$\mu \mathrm{A}$
ICc	Quiescent Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$2.3 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

2. These values of V_{I} are used to test DC electrical characteristics only.

AC CHARACTERISTICS $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$

Symbol	Parameter	Waveform	Limits								Unit
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$								
			$\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
toshl tosLh	Output-to-Output Skew (Note 3)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	ns

3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
Volp	Dynamic LOW Peak Voltage (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$		V
V OLV	Dynamic LOW Valley Voltage (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$		V

4. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 3. AC Waveforms

Symbol	V_{CC}			
	$3.3 \mathrm{~V} \pm \mathbf{0 . 3} \mathrm{V}$	$\mathbf{2 . 7} \mathrm{V}$	$\mathbf{2 . 5} \mathrm{V} \pm \mathbf{0 . 2} \mathrm{V}$	$\mathbf{5 . 0} \mathrm{V}$
	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{Cc}} / 2$	$\mathrm{~V}_{\mathrm{Cc}} / 2$
Vmo	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{Cc}} / 2$	$\mathrm{~V}_{\mathrm{Cc}} / 2$
$\mathrm{~V}_{\mathrm{HZ}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{LZ}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

MC74LCX245

TEST	SWITCH
$\mathrm{t}_{\text {PLH, }}$, $\mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & 6 \mathrm{~V} \text { at } \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & 6 \mathrm{~V} \text { at } \mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} \end{aligned}$
Open Collector/Drain $\mathrm{tPLH}^{\text {and }} \mathrm{tPHL}$	6 V
tezh, $^{\text {t }}$ PHZ	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ or equivalent (includes jig and probe capacitance)
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

Figure 4. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping †
MC74LCX245DWR2G	SOIC-20 (Pb-Free)	1000 Tape \& Reel
MC74LCX245DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74LCX245DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX245DTR2G	TSSOP-20 (Pb-Free)	2500 Tape \& Reel
NLV74LCX245DTR2G*	TSSOP-20 (Pb-Free)	2500 Tape \& Reel
MC74LCX245MNTWG	QFN20 (Pb-Free)	3000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

QFN20, 2.5x4.5 MM
CASE 485AA-01
ISSUE B
DATE 30 APR 2010

SCALE 2:1

NOTES:
. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	2.50 BSC	
D2	0.85	1.15
E	4.50 BSC	
E2	2.85	3.15
e	0.50 BSC	
K	0.20	---
L	0.35	0.45

GENERIC MARKING

 DIAGRAM*| 0 |
| :---: |
| $X X X X$ |
| $X X X X$ |
| ALYW |
| \bullet |

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	= Wafer Lot
Y	= Year
W	= Work Week
-	= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON12653D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN20. 2.5X4.5 MM | PAGE 1 OF 1 |

[^1]

SCALE 1：1

Q	0.25 （M）	T	A（S）	B（S）

RECOMMENDED SOLDERING FOOTPRINT＊

＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

NOTES：
1．DIMENSIONS ARE IN MILLIMETERS．
2．INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14．5M， 1994
3．DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
4．MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5．DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION．ALLOWABLE PROTRUSION
PROTRUSION．ALLOWABLE PROTRUSIO
SHALL BE 0.13 TOTAL IN EXCESS OF B
SHALL BE 0．13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
DIMENSION AT MAXIMUM MATERIAL
CONDITION．

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
0	0°	7°

GENERIC
 MARKING DIAGRAM＊
 20日月日日月日日月日

XXXXX＝Specific Device Code
A＝Assembly Location
WL＝Wafer Lot
YY＝Year
WW＝Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-$ Free indicator，＂ G ＂or microdot＂$\stackrel{ }{ }$＂， may or may not be present．

| DOCUMENT NUMBER： | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－20 WB | PAGE 1 OF 1 |

[^2]TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.3	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

[^3]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D. 112 74AHCT245D. 112 SN74LVCH16952ADGGR
CY74FCT16245TPVCT 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112 74LV245PW. 112 74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R 74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N MC100EP16DTR2G 5962-9221403MRA 74ALVC164245PAG 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG 74LVC162245APAG8

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^2]: ON Semiconductor and（ON）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^3]: ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

