NLX1G74

Single D Flip-FIop

The NLX1G74 is a high performance, full function edge-triggered D Flip-Flop in ultra-small footprint. The NLX1G74 input structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- Extremely High Speed: $\mathrm{t}_{\mathrm{PD}}=2.6 \mathrm{~ns}$ (typical) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Designed for 1.65 V to 5.5 V VCC Operation
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- 24 mA Balanced Output Sink and Source Capability at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input Pins
- Ultra Small Package
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This is a $\mathrm{Pb}-$ Free Device

TRUTH TABLE

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Inputs} \& \multicolumn{2}{|l|}{Outputs} \& \multirow[b]{2}{*}{Operating Mode} \\
\hline PR \& CLR \& CP \& D \& Q \& Q \& \\
\hline L \& H
L
L \& \begin{tabular}{l}
\\
\hline \\
\(\times\) \\
\(\times\) \\
\(\times\) \\
\hline
\end{tabular} \& X
\(\times\)

X \& H
L
H \& L
H

H \& | Asynchronous Set |
| :--- |
| Asynchronous Clear |
| Undetermined |

\hline H
H \& H
H \& \uparrow \& n
1 \& H
L \& L \& Load and Read Register

\hline H \& H \& \uparrow \& X \& NC \& NC \& Hold

\hline \multicolumn{7}{|l|}{H = High Voltage Level}

\hline h \& \multicolumn{6}{|r|}{= High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition}

\hline L \& \multicolumn{6}{|c|}{= Low Voltage Level}

\hline 1 \& \multicolumn{6}{|r|}{= Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition}

\hline NC \& \multicolumn{6}{|c|}{= No Change}

\hline X \& \multicolumn{6}{|r|}{= High or Low Voltage Level and Transitions are Acceptable}

\hline \uparrow \& \multicolumn{6}{|c|}{= Low-to-High Transition}

\hline \uparrow \& \multicolumn{6}{|c|}{= Not a Low-to-High Transition}

\hline \multicolumn{7}{|l|}{For ICC reasons, DO NOT FLOAT Inputs}

\hline
\end{tabular}

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

UQFN8
MU SUFFIX
CASE 523AN

MARKING DIAGRAM

AA = Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)

PINOUT DIAGRAM

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

NLX1G74

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage - Output in High or Low State (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	-50	mA
Io	DC Output Sink Current	± 50	mA
I_{CC}	DC Supply Current Per Supply Pin	± 100	mA
IGND	DC Ground Current Per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 2)	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{\text {D }}$	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	250	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	$\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Io absolute maximum rating must be observed
2. Measured with minimum pad spacing on an FR4 board, using $10 \mathrm{~mm} \times 1$ inch, 2 ounce copper trace with no air flow.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol		Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	Operating Data Retention Only	1.65	5.5	V
		(Note 6)	1.5	5.5	
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	(HIGH or LOW State)	0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage		0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	0	20
		$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	5.0	

6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

ORDERING INFORMATION

Device	Package	Shipping †
NLX1G74MUTCG	UQFN8 (Pb-Free)	$3000 /$ Tape \& Reel
NLVX1G74MUTCG*	UQFN8 (Pb-Free)	$3000 /$ Tape \& Reel

[^0]
NLX1G74

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		1.65	$0.75 \mathrm{~V}_{\mathrm{CC}}$			$0.75 \mathrm{~V}_{\mathrm{CC}}$		V
			2.3 to 5.5	$0.7 \mathrm{~V}_{\mathrm{CC}}$			$0.7 \mathrm{~V}_{\text {CC }}$		
V_{IL}	Low-Level Input Voltage		1.65			$0.25 \mathrm{~V}_{\mathrm{CC}}$		$0.25 \mathrm{~V}_{\mathrm{CC}}$	V
			2.3 to 5.5			$0.3 \mathrm{~V}_{\mathrm{CC}}$		$0.3 \mathrm{~V}_{\mathrm{CC}}$	
V_{OH}	High-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.29 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 1.52 \\ 2.1 \\ 2.4 \\ 2.7 \\ 2.5 \\ 4.0 \\ \hline \end{gathered}$		$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{CC}}-0.1 \\ 1.29 \\ 1.9 \\ 2.2 \\ 2.4 \\ 2.3 \\ 3.8 \\ \hline \end{array}$		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ \hline \end{array}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		$\begin{gathered} \hline 0.008 \\ 0.10 \\ 0.12 \\ 0.15 \\ 0.19 \\ 0.30 \\ 0.30 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \\ \hline \end{gathered}$	V
In	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
IofF	Power off Input Leakage Current	5.5 V or $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	0			1.0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1.0		10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency (50\% Duty Cycle) (Waveform 1)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	75			75		MHz
		2.5 ± 0.2		150			150		
		3.3 ± 0.3		200			200		
		5.0 ± 0.5		250			250		
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	175			175		
		5.0 ± 0.5		200			200		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, CP to Q or $\overline{\mathrm{Q}}$ (Waveform 1)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	2.5	6.5	12.5	2.5	13	ns
		2.5 ± 0.2		1.5	3.8	7.5	1.5	8.0	
		3.3 ± 0.3		1.0	2.8	6.5	1.0	7.0	
		5.0 ± 0.5		0.8	2.2	4.5	0.8	5.0	
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	1.0	3.4	7.0	1.0	7.5	
		5.0 ± 0.5		1.0	2.6	5.0	1.0	5.5	
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Propagation Delay, $\overline{\mathrm{PR}}$ or $\overline{\mathrm{CLR}}$ to Q or $\overline{\mathrm{Q}}$ (Waveform 2)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	2.5	6.5	14	2.5	14.5	ns
		2.5 ± 0.2		1.5	3.8	9.0	1.5	9.5	
		3.3 ± 0.3		1.0	2.8	6.5	1.0	7.0	
		5.0 ± 0.5		0.8	2.2	5.0	0.8	5.5	
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	1.0	3.4	7.0	1.0	7.5	
		5.0 ± 0.5		1.0	2.6	5.0	1.0	5.5	
ts	Setup Time, D to CP (Waveform 1)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	6.5			6.5		ns
		2.5 ± 0.2		3.5			3.5		
		3.3 ± 0.3		2.0			2.0		
		5.0 ± 0.5		1.5			1.5		
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	2.0			2.0		
		5.0 ± 0.5		1.5			1.5		
t_{H}	Hold Time, D to CP (Waveform 1)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	0.5			0.5		ns
		2.5 ± 0.2		0.5			0.5		
		3.3 ± 0.3		0.5			0.5		
		5.0 ± 0.5		0.5			0.5		
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	0.5			0.5		
		5.0 ± 0.5		0.5			0.5		
t_{W}	Pulse Width, CP, CLR, $\overline{P R}$ (Waveform 3)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	6.0			6.0		ns
		2.5 ± 0.2		4.0			4.0		
		3.3 ± 0.3		3.0			3.0		
		5.0 ± 0.5		2.0			2.0		
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	3.0			3.0		
		5.0 ± 0.5		2.0			2.0		
$t_{\text {REC }}$	Recover Time $\overline{\text { PR; }} \overline{\mathrm{CLR}}$ to CP (Waveform 3)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1 \mathrm{M} \Omega \\ & \mathrm{~S}_{1}=\text { Open } \end{aligned}$	8.0			8.0		MHz
		2.5 ± 0.2		4.5			4.5		
		3.3 ± 0.3		3.0			3.0		
		5.0 ± 0.5		3.0			3.0		
		3.3 ± 0.3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega, \mathrm{~S}_{1}=\text { Open } \end{aligned}$	3.0			3.0		
		5.0 ± 0.5		3.0			3.0		

7. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 2$ (per flip-flop). $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $P_{D}=C_{P D} \bullet V_{C C}{ }^{2} \bullet f_{i n}+l_{C C} \bullet V_{C C}$.

CAPACITANCE (Note 8)

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	7.0	
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	pF	
C_{PD}	Power Dissipation Capacitance (Note 9)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	7.0	
	Frequency $=10 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	16	

8. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
9. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption ($\mathrm{I}_{\mathrm{CCD}}$) at no output loading and operating at 50% duty cycle. (See Figure 1) $\mathrm{C}_{P D}$ is related to $\mathrm{I}_{\mathrm{CCD}}$ dynamic operating current by the expression: $I_{C C D}=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C(\text { static })}$.

D

WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3.0 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 2 - PROPAGATION DELAYS
$t_{R}=t_{F}=3.0 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

PR, CLR

WAVEFORM 3 - RECOVERY TIME
$t_{R}=t_{F}=3.0 \mathrm{~ns}$ from 10% to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$ Output Reg: $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 2.0 \mathrm{~V}$
Figure 1. AC Waveforms

Figure 2. Test Circuit

UQFN8, 1.6x1.6, 0.5P

CASE 523AN-01

ISSUE O
DATE 26 NOV 2008
SCALE 4:1

MARKING DIAGRAM*

1 | 0 |
| :--- |
| $X X M$ |

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " n ", may or may not be present.

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON36348E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 8PIN UQFN, 1.6X1.6, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV. 125 74AHC74D. 112 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D.652 74HC574D.653

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

