ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
NLX1G99

Configurable Multifunction Gate

The NLX1G99 MiniGate ${ }^{\text {TM }}$ is an advanced high-speed CMOS multifunction gate with a 3-state output. With the output enable input $(\overline{\mathrm{OE}})$ at High, the output is disabled and is kept at high impedance. With the output enable input ($\overline{\mathrm{OE}})$ at Low, the device can be configured for logic functions such as MUX, AND, OR, NAND, NOR, XOR, XNOR, INVERT and BUFFER, depending on the combination of the 4 -bit input. The device has Schmitt-trigger inputs, thereby enhancing noise immunity.

The NLX1G99 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{\text {PD }}=6.7 \mathrm{~ns}$ (Max) $@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

PIN ASSIGNMENT

1	$\overline{\mathrm{OE}}$
2	A
3	B
4	GND
5	C
6	D
7	Y
8	$\mathrm{~V}_{\mathrm{CC}}$

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

PIN ASSIGNMENTS

NLX1G99

FUNCTION DIAGRAM

FUNCTION TABLE*

INPUT					OUTPUT
$\overline{O E}$	D	C	B	A	Y
L	L	L	L	L	L
L	L	L	L	H	H
L	L	L	H	L	L
L	L	L	H	H	H
L	L	H	L	L	L
L	L	H	L	H	L
L	L	H	H	L	H
L	L	H	H	H	H
L	H	L	L	L	H
L	H	L	L	H	L
L	H	L	H	L	H
L	H	L	H	H	L
L	H	H	L	L	H
L	H	H	L	H	H
L	H	H	H	L	L
L	H	H	H	H	L
H	H or L	H or L	H or L	H or L	Z

*To select a logic function, please refer to "Logic Configurations" section.

FUNCTION SELECTION	LOGIC CONFIGURATION PAGE
3-State Buffers	3
3-State Inverters	3
3-State MUXes	3
3-State AND / OR / NOR	4
3-State NAND / OR	5
3-State XOR/XNOR	6

NLX1G99

LOGIC CONFIGURATIONS

3-State Buffer Functions Available

Figure 2.

Function	OE	A	B	C	D
3-State Buffer	L	Input	H or L	L	L
		H or L	Input	H	L
		L	H	Input	L
		H	Input	Input	
		H or L	H or L	L	Input
		L	L	H or L	Input

3-State Inverter Functions Available

Figure 3.

Function	OE	A	B	C	D
3-State Buffer	L	$\begin{gathered} \text { Input } \\ \text { X } \\ \text { L } \\ \text { H } \\ \text { H } \\ \text { H or L } \\ \text { H } \end{gathered}$	$\begin{gathered} \text { H or L } \\ \text { Input } \\ \text { H } \\ \text { L } \\ \text { H or L } \\ \text { H } \\ \text { H } \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \text { Input } \\ \text { Input } \\ \mathrm{L} \\ \mathrm{H} \\ \mathrm{H} \text { or L } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \\ \text { Input } \\ \text { Input } \\ \text { Input } \end{gathered}$

3-State MUX Functions Available

Figure 4.

Function	OE	A	B	C	D
3-State 2-to-1	L	Input 1	Input 2	Input 1 or Input 2	L
3-State 2-to-1		Input 2	Input 1	Input 2 or Input 1	L
3-State 2-to-1, Inverted Out		Input 1	Input 2	Input 1 or Input 2	H
3-State 2-to-1, Inverted Out		Input 2	Input 1	Input 2 or Input 1	H

NLX1G99

3-State AND/NOR/OR Function Available

 Y

Figure 5.

No. of Inputs	AND/NAND Function	OR/NOR Function	$\overline{\text { OE }}$	A	B	C	D
2	3-State AND	3-State NOR	L	L	Input 1	Input 2	L
2	3-State AND	3-State NOR		L	Input 2	Input 1	L

Y

Figure 6.

No. of Inputs	AND/NAND Function	OR/NOR Function	OE	A	B	C	D
2	3-State AND	3-State NOR	L	Input 2	L	Input 1	L
2	3-State AND	3-State NOR		H	Input 1	Input 2	H

Figure 7.

No. of Inputs	AND/NAND Function	OR/NOR Function	OE	A	B	C	D
2	3-State AND	3-State NOR	L	Input 1	L	Input 2	L
2	3-State AND	3-State NOR		H	Input 2	Input 1	H

Figure 8.

No. of Inputs	AND/NAND Function	OR/NOR Function	OE	A	B	C	D
2	3-State AND	3-State NOR	L	Input 1	H	Input 2	H
2	3-State AND	3-State NOR		Input 2	H	Input 1	H

NLX1G99

3-State NAND/OR Function Available

Y

Figure 9.

No. of Inputs	AND/NAND Function	OR/NOR Function	$\overline{\text { OE }}$	A	B	C	D
2	3-State NAND	3-State OR	L	L	Input 1	Input 2	H
2	3-State NAND	3-State OR		L	Input 2	Input 1	H

Figure 10.

No. of Inputs	AND/NAND Function	OR/NOR Function	OE	A	B	C	D
2	3-State NAND	3-State OR 2	3-State NAND	3-State OR		Input 2	L
Input 1	H						
Input 2	L						

Figure 11.

No. of Inputs	AND/NAND Function	OR/NOR Function	OE	A	B	C	D
2	3-State NAND	3-State OR	L	Input 1	L	Input 2	H
2	3-State NAND	3-State OR		H	Input 2	Input 1	L

Figure 12.

No. of Inputs	AND/NAND Function	OR/NOR Function	OE	A	B	C	D
2	3-State AND	3-State OR	L	Input 1	H	Input 2	L
2	3-State AND	3-State OR		Input 2	H	Input 1	L

NLX1G99

3-State XOR/XNOR Function Available

Figure 13.

Function	OE	A	B	C	D
3-State XOR	L	Input 1	H or L	L	Input 2
		Input 2	H or L	L	Input 1
		Hor L	Input 1	H	Inut 2
		Hor L	Input 2	H	Input 1
		H	H	Input 1	Input 2
		Input 2	Input 1		

Figure 14.

Function	$\overline{\text { OE }}$	A	B	C	D
3-State XOR	L	H	L	Input 1	Input 2

Figure 15.

Figure 16.

Function	$\overline{\text { OE }}$	A	B	C	D
3-State XNOR	L	H	L	Input 1	Input 2
3-State XNOR		H	L	Input 2	Input 1

NLX1G99

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage Active Mode (High or Low State) Tristate Mode (Output at $\mathrm{Hi}-\mathrm{Z}$) Power Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} -0.5 \text { to } \mathrm{V}_{\mathrm{cc}}+0.5 \\ -0.5 \text { to }+7.0 \\ -0.5 \text { to }+7.0 \end{gathered}$	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<$ GND	-50	mA
IOK	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<$ GND	-50	mA
10	DC Output Source/Sink Current	± 50	mA
I_{CC}	DC Supply Current Per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V -0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$	V
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA / JESD22-A114-A.
3. Tested to EIA / JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage	Active Mode (High or Low State) Tristate Mode (Output at $\mathrm{Hi}-\mathrm{Z}$) Power Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 5.5 \\ & 5.5 \end{aligned}$	V
T_{A}	Operating Free-Air Temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	No Limit No Limit No Limit	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min	Max	Min	Max	Min	Max	
$\mathrm{V}_{\mathrm{T}_{+}}$	Positive Threshold Voltage		$\begin{aligned} & 1.65 \\ & 1.8 \\ & 2.3 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.87 \\ & 1.11 \\ & 1.5 \\ & 2.16 \\ & 2.61 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.28 \\ & 1.56 \\ & 1.87 \\ & 2.74 \\ & 3.33 \end{aligned}$		$\begin{aligned} & 1.16 \\ & 1.28 \\ & 1.56 \\ & 1.87 \\ & 2.74 \\ & 3.33 \end{aligned}$		$\begin{aligned} & 1.16 \\ & 1.28 \\ & 1.56 \\ & 1.87 \\ & 2.74 \\ & 3.33 \end{aligned}$	V
$\mathrm{V}_{\text {T- }}$	Negative Threshold Voltage		$\begin{aligned} & \hline 1.65 \\ & 1.8 \\ & 2.3 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	0.35 0.38 0.58 0.84 1.41 1.78	$\begin{gathered} \hline 0.62 \\ 0.68 \\ 0.87 \\ 1.19 \\ 1.9 \\ 2.29 \end{gathered}$	0.35 0.38 0.58 0.84 1.41 1.78		$\begin{aligned} & 0.35 \\ & 0.38 \\ & 0.58 \\ & 0.84 \\ & 1.41 \\ & 1.78 \end{aligned}$		V
V_{H}	Hysteresis Voltage		$\begin{aligned} & \hline 1.65 \\ & 1.8 \\ & 2.3 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.33 \\ & 0.40 \\ & 0.53 \\ & 0.71 \\ & 0.8 \end{aligned}$	$\begin{gathered} \hline 0.62 \\ 0.68 \\ 0.8 \\ 0.87 \\ 1.04 \\ 1.2 \end{gathered}$	$\begin{aligned} & 0.30 \\ & 0.33 \\ & 0.40 \\ & 0.53 \\ & 0.71 \\ & 0.8 \end{aligned}$	$\begin{gathered} \hline 0.62 \\ 0.68 \\ 0.8 \\ 0.87 \\ 1.04 \\ 1.2 \end{gathered}$	$\begin{aligned} & 0.30 \\ & 0.33 \\ & 0.40 \\ & 0.53 \\ & 0.71 \\ & 0.8 \end{aligned}$	$\begin{gathered} \hline 0.62 \\ 0.68 \\ 0.8 \\ 0.87 \\ 1.04 \\ 1.2 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}-\mathrm{MIN}} \text { or } \\ \mathrm{V}_{\mathrm{T}+\mathrm{MAX}} \\ \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.65-5.5 \\ & 1.65-5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}-0.1} \\ & \mathrm{~V}_{\mathrm{CC}}-0.1 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.1 \\ & \mathrm{~V}_{\mathrm{CC}^{-}-0.1} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.1 \\ & \mathrm{v}_{\mathrm{CC}}-0.1 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}-\mathrm{MIN}} \mathrm{or} \\ & \mathrm{~V}_{\mathrm{T}+\mathrm{MAX}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}} \end{aligned}$	$\begin{gathered} 1.65 \\ 2.3 \\ 2.7 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$	$\begin{aligned} & 1.2 \\ & 1.9 \\ & 2.2 \\ & 2.4 \\ & 2.3 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.9 \\ & 2.2 \\ & 2.4 \\ & 2.3 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.9 \\ & 2.2 \\ & 2.4 \\ & 2.3 \\ & 3.8 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{gathered} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}-\mathrm{MIN}} \text { or } \\ \mathrm{V}_{\mathrm{T}+\mathrm{MAX}} \\ \mathrm{OL}=50 \mu \mathrm{~A} \\ \mathrm{IOL}_{\mathrm{OL}}=100 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.65-5.5 \\ & 1.65-5.5 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}-\mathrm{MIN}} \mathrm{or} \\ \mathrm{~V}_{\mathrm{T}+\mathrm{MAX}} \\ \mathrm{IOL}_{\mathrm{OL}}=4 \mathrm{~mA} \\ \mathrm{IOL}_{\mathrm{OL}}=8 \mathrm{~mA} \\ \mathrm{OLL}^{\mathrm{OL}}=12 \mathrm{~mA} \\ \mathrm{OLL}^{2}=24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 1.65 \\ & 2.3 \\ & 2.7 \\ & 3.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{gathered} 0.45 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$		$\begin{gathered} 0.45 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$		$\begin{gathered} 0.45 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.45 \\ 0.55 \end{gathered}$	
I_{N}	Input Leakage Current	$\begin{gathered} 0 \leq V_{\mathrm{IN}} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	0-5.5		± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	Power off Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}} \text { or } \mathrm{V}_{\mathrm{O}}= \\ 5.5 \mathrm{~V} \end{gathered}$	0		± 1.0		± 10		± 10	$\mu \mathrm{A}$
loz	Tri-state Output Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \end{gathered}$	1.65-5.5		± 1.0		± 10		± 10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND, } \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	1.65-5.5		1.0		10		10	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Increase in ICC Per Input	One input at ($\mathrm{V}_{\mathrm{Cc}}-0.6$) V , other inputs at V_{CC} or GND	2.3-5.5		10		100		100	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test Condition	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, Any Input to Output Y (See Test Circuit)	$\begin{gathered} 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$	Refer to switch positions and loading conditions in Figure 17 to 21 .	$\begin{aligned} & \hline 4.3 \\ & 2.4 \\ & 1.7 \\ & 1.3 \end{aligned}$	$\begin{gathered} \hline 12.8 \\ 7.1 \\ 5.2 \\ 4.0 \end{gathered}$	$\begin{gathered} \hline 25.1 \\ 10.2 \\ 6.7 \\ 4.5 \end{gathered}$	$\begin{aligned} & 4.3 \\ & 2.4 \\ & 1.7 \\ & 1.3 \end{aligned}$	$\begin{gathered} \hline 25.1 \\ 10.2 \\ 6.9 \\ 4.9 \end{gathered}$	$\begin{aligned} & 4.3 \\ & 2.4 \\ & 1.7 \\ & 1.3 \end{aligned}$	$\begin{gathered} \hline 25.1 \\ 10.2 \\ 7.0 \\ 5.0 \end{gathered}$	ns
$t_{E N}$	Output Enable Time, OE to Y	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$	Refer to switch positions and loading conditions in Figure 17 to 21.	$\begin{aligned} & 3.4 \\ & 2.1 \\ & 1.3 \\ & 1.0 \end{aligned}$		$\begin{gathered} \hline 24.7 \\ 11 \\ 7.5 \\ 5.7 \end{gathered}$	$\begin{aligned} & 3.4 \\ & 2.1 \\ & 1.3 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 24.7 \\ 12 \\ 8.0 \\ 6.2 \end{gathered}$	$\begin{aligned} & 3.4 \\ & 2.1 \\ & 1.3 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 24.7 \\ 12.2 \\ 8.3 \\ 6.5 \end{gathered}$	ns
$\mathrm{t}_{\text {DIS }}$	Output Disable Time, OE to Y	$\begin{aligned} & 1.65-1.95 \\ & 2.3-2.7 \\ & 3.0-3.6 \\ & 4.5-5.5 \end{aligned}$	Refer to switch positions and loading conditions in Figure 17 to 21.	$\begin{aligned} & \hline 4.0 \\ & 2.7 \\ & 3.5 \\ & 2.0 \end{aligned}$		$\begin{gathered} \hline 15.5 \\ 7.5 \\ 7.0 \\ 5.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.7 \\ & 3.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 15.5 \\ 7.5 \\ 7.0 \\ 5.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.7 \\ & 3.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 15.5 \\ 7.5 \\ 7.0 \\ 5.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Any Input to Output Y (See Test Circuit)	$\begin{aligned} & 1.65-1.95 \\ & 2.3-2.7 \\ & 3.0-3.6 \\ & 4.5-5.5 \end{aligned}$	Refer to switch Positions and loading conditions in Figure 22 to 26.	$\begin{aligned} & \hline 4.3 \\ & 2.5 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{gathered} \hline 13.6 \\ 7.8 \\ 5.6 \\ 4.4 \end{gathered}$	$\begin{gathered} \hline 25.7 \\ 10.7 \\ 7.6 \\ 5.2 \end{gathered}$	$\begin{aligned} & 4.3 \\ & 2.5 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 25.7 \\ & 10.7 \\ & 7.6 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 2.5 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{gathered} \hline 25.7 \\ 10.7 \\ 7.6 \\ 5.2 \end{gathered}$	ns
$t_{\text {EN }}$	Output Enable Time, $\overline{\mathrm{OE}}$ to Y	$\begin{aligned} & 1.65-1.95 \\ & 2.3-2.7 \\ & 3.0-3.6 \\ & 4.5-5.5 \end{aligned}$	Refer to switch Positions and loading conditions in Figure 22 to 26.	$\begin{aligned} & 4.2 \\ & 2.4 \\ & 2.0 \\ & 1.7 \end{aligned}$		$\begin{gathered} \hline 25.2 \\ 11.3 \\ 8.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & 4.2 \\ & 2.4 \\ & 2.0 \\ & 1.7 \end{aligned}$	$\begin{gathered} \hline 25.2 \\ 12.2 \\ 8.5 \\ 6.5 \end{gathered}$	$\begin{aligned} & 4.2 \\ & 2.4 \\ & 2.0 \\ & 1.7 \end{aligned}$	$\begin{gathered} \hline 25.2 \\ 13 \\ 8.7 \\ 6.7 \end{gathered}$	ns
${ }_{\text {t }}$ IS	Output Disable Time, OE to Y	$\begin{gathered} 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$	Refer to switch Positions and loading conditions in Figure 22 to 26 .	$\begin{aligned} & 3.7 \\ & 2.0 \\ & 2.1 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 15 \\ & 6.5 \\ & 5.6 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 2.0 \\ & 2.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 6.7 \\ & 5.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 2.0 \\ & 2.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 6.9 \\ & 5.9 \\ & 4.9 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3			3.5						pF
C_{0}	Output Capacitance	3.3			6.0						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 6)	3.3	$\mathrm{f}=10 \mathrm{MHz}$		22						pF

6. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{C C(O P R)}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NLX1G99

TEST CIRCUIT AND VOLTAGE WAVEFORMS

Test	S1
$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PZL }}$	$\mathrm{V}_{\text {LOAD }}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$	GND

${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes probes and jig capacitance.
Figure 17. Load Circuit

$\mathbf{V}_{\mathbf{C C}}$	Inputs						
	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}} / \mathbf{t}_{\mathbf{f}}$		$\mathbf{V}_{\mathrm{LOAD}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	\mathbf{V}_{Δ}
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$		$2 \times \mathrm{V}_{\mathrm{CC}}$	15 pF	$1 \mathrm{M} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	15 pF	$1 \mathrm{M} \Omega$	0.15 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	3 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	15 pF	$1 \mathrm{M} \Omega$	0.3 V
$5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	15 pF	$1 \mathrm{M} \Omega$	0.3 V

Figure 18. Voltage Waveforms Pulse Duration

Figure 20. Voltage Waveforms Propagation Delay Times Inverting and Noninverting Outputs

Figure 19. Voltage Waveforms Setup and Hold Times

Figure 21. Voltage Waveforms Enable and Disable Times Low- and High-Level Enabling
7. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control
8. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
9. The outputs are measured one at a time, with one transition per measurement.
10. All parameters are waveforms are not applicable to all devices.

Test	S1
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	V $_{\text {LOAD }}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes probes and jig capacitance.
Figure 22. Load Circuit

$\mathbf{V}_{\mathbf{C C}}$	Inputs						
	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}} / \mathbf{t}_{\mathbf{f}}$		$\mathbf{V}_{\mathrm{LOAD}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{v}_{\boldsymbol{u}}$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$		$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	500Ω	0.15 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	3 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	50 pF	500Ω	0.3 V

Figure 23. Voltage Waveforms Pulse Duration

Figure 25. Voltage Waveforms Propagation Delay Times Inverting and Noninverting Outputs

Figure 24. Voltage Waveforms Setup and Hold Times

Figure 26. Voltage Waveforms Enable and Disable Times Low- and High-Level Enabling
11. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control
12. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
13. The outputs are measured one at a time, with one transition per measurement.
14. All parameters are waveforms are not applicable to all devices.

NLX1G99

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NLX1G99DMUTCG	UDFN8, $1.95 \times 1.0,0.5 \mathrm{P}$ ($\mathrm{Pb}-\mathrm{Free}$)	3000 / Tape \& Reel
NLX1G99DMUTWG	UDFN8, $1.95 \times 1.0,0.5 \mathrm{P}$ ($\mathrm{Pb}-\mathrm{Free}$)	3000 / Tape \& Reel
NLX1G99EMUTCG (In Development)	UDFN8, $1.6 \times 1.0,0.4 \mathrm{P}$ (Pb -Free)	3000 / Tape \& Reel
NLX1G99FMUTCG (In Development)	UDFN8, $1.45 \times 1.0,0.35 \mathrm{P}$ (Pb-Free)	3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLX1G99

PACKAGE DIMENSIONS

UDFN8 1.6x1.0, 0.4P
CASE 517BY
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. CONTROLLING DIMENS TO PLATED

DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13	
REF		
b	0.15	
D	0.25	
E	1.00	
BSC		
e	0.40	
BSC		
L	0.25	0.35
L1	0.30	0.40

RECOMMENDED

 SOLDERING FOOTPRINT*
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLX1G99

PACKAGE DIMENSIONS

UDFN8 1.45x1.0, 0.35P
CASE 517BZ
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. $\begin{aligned} & \text { 0.15 AND } 0.20 ~ M M ~ F R O M ~ T E R M I N A L ~ T I P . ~\end{aligned}$ BURRS AND MOLD FLASH.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13	
REF		
b	0.15	0.25
D	1.45	
BSC		
E	1.00	
BSC		
e	0.35	
BSC		
L1	0.25	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLX1G99

PACKAGE DIMENSIONS

UDFN8 1.95x1.0, 0.5P
CASE 517CA
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP
3. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13 REF	
b	0.15	0.25
D	1.95 BSC	
E	1.00 BSC	
e	0.50	BSC
L	0.25	0.35
L1	0.30	0.40

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-\mathrm{Free}$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC85N NLU1G32AMUTCG CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG
NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G
74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G
NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG
74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG

NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

