Dual Schmitt-Trigger Buffer

The NLX2G17 MiniGate[™] is an advanced high-speed CMOS dual non-inverting Schmitt-trigger buffer in ultra-small footprint.

The NLX2G17 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

The NLX2G17 can be used to enhance noise immunity or to square up slowly changing waveforms.

Features

- High Speed: $t_{PD} = 3.1 \text{ ns (Typ)} @ V_{CC} = 5.0 \text{ V}$
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- 24 mA Balanced Output Source and Sink Capability
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb-Free Devices

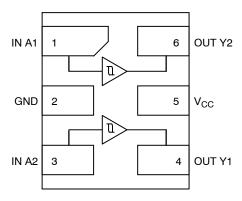


Figure 1. Pinout (Top View)

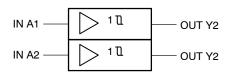


Figure 2. Logic Symbol

PIN ASSIGNMENT

A Y L L H H

IN A1
GND
IN A2
OUT Y2
V _{CC}
OUT Y1

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

ULLGA6 1.0 x 1.0 CASE 613AD

ULLGA6 1.2 x 1.0 CASE 613AE

ULLGA6 1.45 x 1.0 CASE 613AF

UDFN6 1.0 x 1.0 CASE 517BX

UDFN6 1.2 x 1.0 CASE 517AA

UDFN6 1.45 x 1.0 CASE 517AQ

K,4,J,Q = Device Marking M = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parame	Value	Unit	
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V	
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to +7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
l _{ok}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _O	DC Output Source/Sink Current	±50	mA	
I _{CC}	DC Supply Current Per Supply Pin	±100	mA	
I _{GND}	DC Ground Current per Ground Pin	±100	mA	
T _{STG}	Storage Temperature Range	−65 to +150	°C	
T_L	Lead Temperature, 1 mm from Case for 10 S	Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C	
MSL	Moisture Sensitivity	Level 1		
F _R	Flammability Rating Oxygen	UL 94 V-0 @ 0.125 in		
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below	±500	mA	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

2. Tested to EIA/JESD22-A114-A.

- 3. Tested to EIA/UESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V	
V _{IN}	Digital Input Voltage	0	5.5	V	
V _{OUT}	Output Voltage	0	5.5	V	
T _A	Operating Free-Air Temperature	-55	+125	°C	
Δt/ΔV	Input Transition Rise or Fall Rate V _{CC} V _{CC} V _{CC}	= 2.5 V ± 0.2 V = 3.3 V ± 0.3 V = 5.0 V ± 0.5 V	0 0 0	No Limit No Limit No Limit	ns/V

DC ELECTRICAL CHARACTERISTICS

			V _{CC} T _A = 25 °C		T _A = +	-85°C	T _A = -5 +12	55°C to 5°C			
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		1.65 2.3 2.7 3.0 4.5 5.5	0.6 1.0 1.2 1.3 1.9 2.2	1.0 1.5 1.7 1.9 2.7 3.3	1.4 1.8 2.0 2.2 3.1 3.6	0.6 1.0 1.2 1.3 1.9 2.2	1.4 1.8 2.0 2.2 3.1 3.6	0.6 1.0 1.2 1.3 1.9 2.2	1.4 1.8 2.0 2.2 3.1 3.6	V
V _{T-}	Negative Threshold Voltage		1.65 2.3 2.7 3.0 4.5 5.5	0.2 0.4 0.5 0.6 1.0	0.5 0.75 0.87 1.0 1.5 1.9	0.8 1.15 1.4 1.5 2.0 2.3	0.2 0.4 0.5 0.6 1.0	0.8 1.15 1.4 1.5 2.0 2.3	0.2 0.4 0.5 0.6 1.0	0.8 1.15 1.4 1.5 2.0 2.3	V
V _H	Low-Level Input Voltage		1.65 2.3 2.7 3.0 4.5 5.5	0.1 0.25 0.3 0.4 0.6 0.7	0.48 0.75 0.83 0.93 1.2 1.4	0.9 1.1 1.15 1.2 1.5 1.7	0.1 0.25 0.3 0.4 0.6 0.7	0.9 1.1 1.15 1.2 1.5 1.7	0.1 0.25 0.3 0.4 0.6 0.7	0.9 1.1 1.15 1.2 1.5 1.7	V
V _{OH}	High- Level	$V_{IN} \ge V_{T+MAX}$ $I_{OH} = -100 \mu A$	1.65 – 5.5	V _{CC} - 0.1	V _{CC}		V _{CC} - 0.1		V _{CC} - 0.1		V
	Output Voltage	$\begin{array}{c} V_{IN} \geq V_{T+MAX} \\ I_{OH} = -4 \text{ mA} \\ I_{OH} = -8 \text{ mA} \\ I_{OH} = -12 \text{ mA} \\ I_{OH} = -16 \text{ mA} \\ I_{OH} = -24 \text{ mA} \\ I_{OH} = -32 \text{ mA} \end{array}$	1.65 2.3 2.7 3.0 3.0 4.5	1.29 1.9 2.2 2.4 2.3 3.8	1.52 2.1 2.4 2.7 2.5 4.0		1.29 1.9 2.2 2.4 2.3 3.8		1.29 1.9 2.2 2.4 2.3 3.8		
V _{OL}	Low-Level Output	$V_{IN} \le V_{T-MIN}$ $I_{OL} = 100 \mu A$	1.65 – 5.5		0	0.1		0.1		0.1	٧
	Voltage	$\begin{array}{c} V_{IN} \leq V_{T-MIN} \\ I_{OH} = 4 \text{ mA} \\ I_{OH} = 8 \text{ mA} \\ I_{OH} = 12 \text{ mA} \\ I_{OH} = 16 \text{ mA} \\ I_{OH} = 24 \text{ mA} \\ I_{OH} = 32 \text{ mA} \end{array}$	1.65 2.3 2.7 3.0 3.0 4.5		0.08 0.2 0.22 0.28 0.38 0.42	0.24 0.3 0.4 0.4 0.55 0.55		0.24 0.3 0.4 0.4 0.55 0.55		0.24 0.3 0.4 0.4 0.55 0.55	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{OFF}	Power-Off Output Leakage Current	V _{OUT} = 5.5 V	0			1.0		10		10	μА
Icc	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		10		10	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ nS}$)

		V _{CC} Test _		Т	΄ _A = 25 °(С	T _A = - to +1		
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay Input A to Output	1.65	$R_L = 1 M\Omega$, $C_L = 15 pF$	2.0	9.1	15	2.0	15.6	ns
		1.8	$R_L = 1 M\Omega$, $C_L = 15 pF$	2.0	7.6	12.5	2.0	13	
		2.3-2.7	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.0	5.0	9.0	1.0	9.5	
		3.0-3.6	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.0	3.7	6.3	1.0	6.5	
			$R_L = 500 \Omega$, $C_L = 50 pF$	1.5	4.4	7.2	1.5	7.5	
		4.5-5.5	$R_L = 1 M\Omega$, $C_L = 15 pF$	0.5	3.1	5.2	0.5	5.5	
			$R_L = 500 \Omega,$ $C_L = 50 pF$	0.8	3.7	5.9	0.8	6.2	
C _{IN}	Input Capacitance	5.5	V _{IN} = 0 V or V _{CC}		7.0				pF
C _{PD}	Power Dissipation Capacitance (Note 6)	3.3 5.5	10 MHz V _{IN} = 0 V or V _{CC}		9.0 11	_			pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

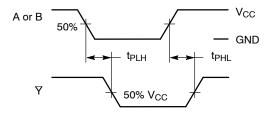
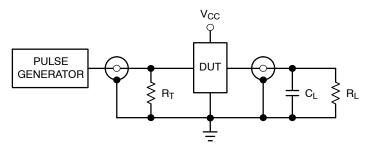



Figure 3. Switching Waveforms

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

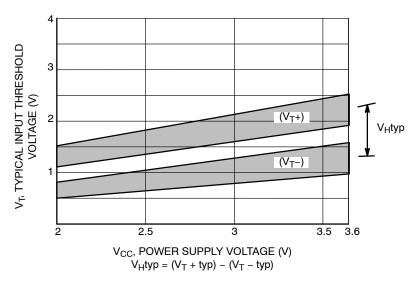
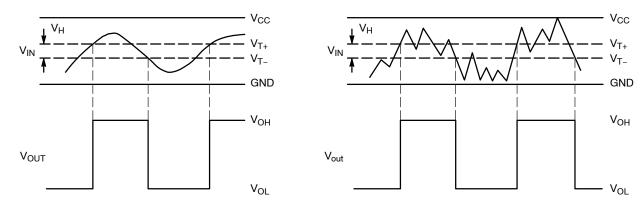



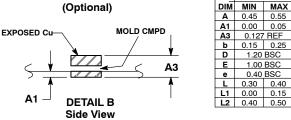
Figure 5. Typical Input Threshold, V_T+, V_T-versus Power Supply Voltage

(a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times

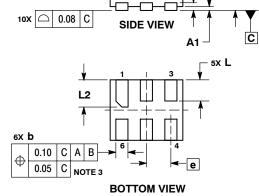
(b) A Schmitt-Trigger Offers Maximum Noise Immunity

Figure 6. Typical Schmitt-Trigger Applications

ORDERING INFORMATION


Device	Package	Shipping [†]
NLX2G17AMX1TCG	ULLGA6, 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
NLX2G17BMX1TCG	ULLGA6, 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
NLX2G17CMX1TCG	ULLGA6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel
NLX2G17MUTCG*	UDFN6, 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
NLX2G17AMUTCG*	UDFN6, 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
NLX2G17CMUTCG*	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

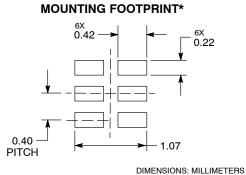

^{*}In Development

PACKAGE DIMENSIONS

UDFN6 1.2x1.0, 0.4P CASE 517AA **ISSUE O EDGE OF PACKAGE** NOTES: D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. В L1 PIN ONE REFERENCE Е **DETAIL A** | MILLIMETERS | DIM | MIN | MAX | A | 0.45 | 0.55 | **Bottom View** (Optional) 0.10 С

(Optional)

TOP VIEW


(A3)

Α

SEATING PLANE

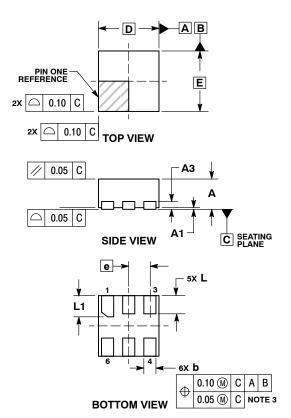
0.10 C

0.10 C

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

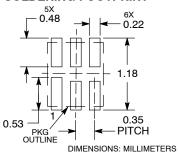
UDFN6 1.45x1.0, 0.5P CASE 517AQ **ISSUE O** D Α NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. В **DETAIL A** PIN ONE REFERENCE OPTIONAL CONSTRUCTIONS Ε MILLIMETERS DIM MIN MAX A 0.45 0.55 A1 0.00 0.05 0.10 C 0.00 | 0.03 0.07 REF 0.20 | 0.30 EXPOSED Cu MOLD CMPD A2 **TOP VIEW** b D E |△| 0.10 | C 1.45 BSC 1.00 BSC 0.50 BSC DETAIL B **DETAIL B** 0.30 0.40 --- 0.15 OPTIONAL CONSTRUCTIONS 0.05 C **MOUNTING FOOTPRINT** 0.05 C Α1 C SEATING PLANE 6X 0.30 SIDE VIEW **A2** PACKAGE OUTLINE е 6X L 1.24 DETAIL A 6X 0.53 0.50 **PITCH** DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering 0.10 CAB details, please download the ON Semiconductor Soldering and С моте з


Mounting Techniques Reference Manual, SOLDERRM/D.

0.05

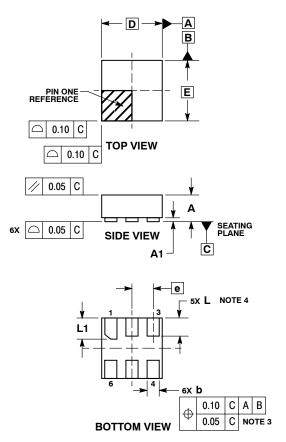
BOTTOM VIEW

PACKAGE DIMENSIONS


UDFN6 1.0x1.0, 0.35P CASE 517BX **ISSUE O**

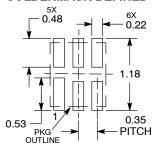
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.13 REF					
b	0.12	0.22				
D	1.00	BSC				
E	1.00	BSC				
е	0.35	BSC				
L	0.25	0.35				
L1	0.30	0.40				


RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


ULLGA6 1.0x1.0, 0.35P CASE 613AD ISSUE A

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION b APPLIES TO PLATED TERMINAL
 AND IS MEASURED BETWEEN 0.15 AND
 0.30 mm FROM THE TERMINAL TIP.
 4. A MAXIMUM OF 0.05 PULL BACK OF THE
 PLATED TERMINAL FROM THE EDGE OF THE
 PACKAGE IS ALLOWED. PACKAGE IS ALLOWED.

_	MILLIMETERS					
DIM	MIN	MAX				
Α		0.40				
A1	0.00	0.05				
b	0.12	0.22				
D	1.00	BSC				
E	1.00	BSC				
е	0.35 BSC					
Ĺ	0.25	0.35				
11	0.30	0.40				

MOUNTING FOOTPRINT SOLDERMASK DEFINED*

DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

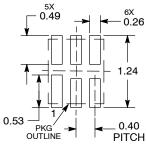
ULLGA6 1.2x1.0, 0.4P CASE 613AE ISSUE A

BOTTOM VIEW

0.05 C NOTE 3

NOTES:

- NOTES:

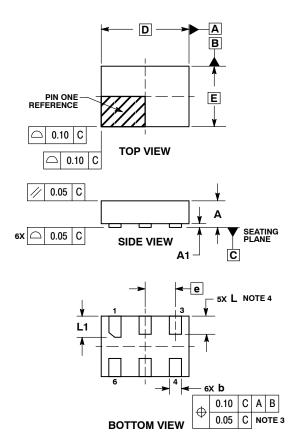

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm EPOLM TUE TERMINAL TIP.
- 0.30 mm FROM THE TERMINAL TIP.
 A MAXIMUM OF 0.05 PULL BACK OF THE
 PLATED TERMINAL FROM THE EDGE OF THE
 PACKAGE IS ALLOWED.

	MILLIM	MILLIMETERS						
DIM	MIN	MAX						
Α		0.40						
A1	0.00	0.05						
b	0.15	0.25						
D	1.20	BSC						
E	1.00	BSC						
е	0.40	BSC						
L	0.25	0.35						
L1	0.35	0.45						

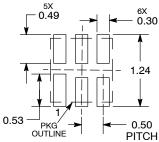
MOUNTING FOOTPRINT SOLDERMASK DEFINED*



DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


ULLGA6 1.45x1.0, 0.5P CASE 613AF **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 APPLIES TO PLATED TERMINAL AND 1S MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.
 A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PLATED TERMINAL FROM THE EDGE OF THE
- PACKAGE IS ALLOWED.

	MILLIMETERS					
DIM	MIN	MAX				
Α		0.40				
A1	0.00	0.05				
b	0.15 0.2					
D	1.45 BSC					
E	1.00	BSC				
е	0.50	BSC				
L	0.25	0.35				
L1	0.30	0.40				

MOUNTING FOOTPRINT **SOLDERMASK DEFINED***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for a surgerial implications to be bely use rights and regards a situation where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B
042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1
74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG
LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC
LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G