NLX2G86

Dual 2-Input Exclusive-OR Gate

The NLX2G86 is a high performance dual 2-input Exclusive-OR Gate operating from a 1.65 V to 5.5 V supply.

Features

- Extremely High Speed: $\mathrm{t}_{\mathrm{PD}} 2.4 \mathrm{~ns}$ (typical) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Designed for 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- Over Voltage Tolerant Inputs and Outputs
- LVTTL Compatible - Interface Capability With 5.0 V TTL Logic with $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Replacement for NC7WZ86
- This is a Pb-Free Device

Figure 1. Pinout (Top View)
PIN ASSIGNMENT

Pin	Function
1	Y 1
2	B2
3	A2
4	GND
5	Y 2
6	B 1
7	A1
8	$\mathrm{~V}_{\mathrm{CC}}$

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAM

UQFN8 MU SUFFIX
CASE 523AN

$\mathrm{AC}=$ Device Code
$\mathrm{M}=$ Date Code*

- $=$ Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Figure 2. Logic Symbol

FUNCTION TABLE

Input		Output $Y=A+B$
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	L

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage	-0.5 to +7.0	V
I_{IK}	DC Input Diode Current $\mathrm{V}_{1}<$ GND	-50	mA
IOK	DC Output Diode Current $\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	-50	mA
I_{0}	DC Output Sink Current	± 50	mA
ICC	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1)	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	TBD	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$		$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by- 1 inch, 2 ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage	Operating Data Retention Only	$\begin{gathered} 1.65 \\ 1.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	V
V_{1}	Input Voltage	(Note 5)	0	5.5	V
V_{O}	Output Voltage	(HIGH or LOW State)	0	5.5	V
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 20 \\ 20 \\ 10 \\ 5 \end{gathered}$	ns/V

5. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit	Condition
			Min	Typ	Max	Min	Max		
V_{IH}	High-Level Input Voltage	$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 5.5 \end{gathered}$	$\begin{gathered} 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$			$\begin{gathered} 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V} \mathrm{CC} \end{gathered}$		V	
V_{IL}	Low-Level Input Voltage	$\begin{gathered} 1.65 \text { to } 1.95 \\ 2.3 \text { to } 5.5 \end{gathered}$			$\begin{aligned} & 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V	
V_{OH}	High-Level Output Voltage$V_{I N}=V_{I H}$	$\begin{aligned} & 1.65 \\ & 1.8 \\ & 2.3 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 1.7 \\ & 2.2 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.8 \\ & 2.3 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.55 \\ & 1.7 \\ & 2.2 \\ & 2.9 \\ & 4.4 \end{aligned}$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 1.65 \\ & 2.3 \\ & 3.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.29 \\ & 1.9 \\ & 2.4 \\ & 2.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 2.15 \\ & 2.80 \\ & 2.68 \\ & 4.20 \end{aligned}$		$\begin{aligned} & \hline 1.29 \\ & 1.9 \\ & 2.4 \\ & 2.3 \\ & 3.8 \end{aligned}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \hline 1.65 \\ & 1.8 \\ & 2.3 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		$\begin{gathered} 1.65 \\ 2.3 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$		$\begin{aligned} & 0.08 \\ & 0.10 \\ & 0.15 \\ & 0.22 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.30 \\ & 0.40 \\ & 0.55 \\ & 0.55 \end{aligned}$		$\begin{aligned} & 0.24 \\ & 0.30 \\ & 0.40 \\ & 0.55 \\ & 0.55 \end{aligned}$	V	$\begin{aligned} & \mathrm{IOL}=4 \mathrm{~mA} \\ & \mathrm{IOL}=8 \mathrm{~mA} \\ & \mathrm{IOL}=16 \mathrm{~mA} \\ & \mathrm{OL}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \end{aligned}$
I_{N}	Input Leakage Current	0 to 5.5			± 1.0		± 1.0	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
Ioff	Power Off Leakage Current	0.0			1.0		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$
$I_{\text {cc }}$	Quiescent Supply Current	1.65 to 5.5			1.0		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{GND}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay (Figure 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.8 ± 0.15	2.0	7.9	9.0	2.0	10.5	ns
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	2.5 ± 0.2	1.2	4.1	7.0	1.2	7.5	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	3.3 ± 0.3	0.8	3.0	4.8	0.8	5.2	
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		1.2	3.8	5.4	1.2	5.9	
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	5.0 ± 0.5	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	3.5 4.2	0.5 1.0	3.8 4.6	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
C_{PD}	Power Dissipation Capacitance (Note 6)	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	9	pF
	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}		11	

6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NLX2G86

Figure 3. Switching Waveform

A 1-MHz square input wave is recommended for propagation delay tests.

Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

Device Order Number	Package Type	Tape and Reel Size †
NLX2G86MUTCG	UQFN8 (Pb-Free)	3000 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL 3. DIMENSION b APPLIES TO PLATED TERM
AND IS MEASURED BETWEEN 0.15 AND AND IS MEASURED BETWEEN 0.15
0.30 mm FROM THE TERMINAL TIP.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.13	
REF	REF	0.15
D	0.25	
E	1.60	
BSC		
e	0.50	
BSC		
L	0.35	0.45
L1	---	0.15
L3	0.25	0.35

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.
SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON36348E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | $\mathbf{8 P P N}$ UQFN, 1.6X1.6, 0.5P | PAGE 1 OF 1 |

[^0]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G
NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G
NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7
NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7
NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7
NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG
NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G

[^0]: ON Semiconductor and (IN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

