MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G

Surface Mount Schottky Power Rectifier

POWERMITE ${ }^{\circledR}$
 Power Surface Mount Package

The SchottkyPOWERMITE ${ }^{\circledR}$ employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, thePOWERMITE ${ }^{\circledR}$ has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, $<1.1 \mathrm{~mm}$ in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC-DC and DC-DC converters, reverse battery protection, and "ORing" of multiple supply voltages and any other application where performance and size are critical.

Features

- Low Profile - Maximum Height of 1.1 mm
- Small Footprint - Footprint Area of $8.45 \mathrm{~mm}^{2}$
- Low V_{F} Provides Higher Efficiency and Extends Battery Life
- Supplied in 12 mm Tape and Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink
- ESD Ratings:
- Human Body Model = 3B (> 16 kV)
- Machine Model = C (> 400 V)
- AEC-Q101 Qualified and PPAP Capable
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- All Packages are $\mathrm{Pb}-$ Free*

Mechanical Characteristics:

- POWERMITE ${ }^{\circledR}$ is JEDEC Registered as D0-216AA
- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 16.3 mg (Approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes: $260^{\circ} \mathrm{C}$ Maximum for 10 Seconds

[^0]ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SCHOTTKY BARRIER RECTIFIER
1.0 AMPERES, 30 VOLTS

MARKING DIAGRAM

M = Date Code BCG = Device Code - = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MBRM130LT1G	POWERMITE (Pb-Free)	$3,000 /$ Tape \& Reel
NRVBM130LT1G	POWERMITE (Pb-Free)	$3,000 /$ Tape \& Reel
MBRM130LT3G	POWERMITE (Pb-Free)	$12,000 /$ Tape \& Reel
NRVBM130LT3G	POWERMITE (Pb-Free)	$12,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$V_{\text {RRM }}$ $V_{\text {RWM }}$ V_{R}	30	V
Average Rectified Forward Current (At Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$)	Io	1.0	A
Peak Repetitive Forward Current (At Rated V_{R}, Square Wave, $100 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$)	$I_{\text {FRM }}$	2.0	A
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	$\mathrm{I}_{\text {FSM }}$	50	A
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 125	${ }^{\circ} \mathrm{C}$
Voltage Rate of Change (Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	dv/dt	10,000	V/us

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol $^{c \mid c}$	Value	Unit
Thermal Resistance, Junction-to-Lead (Anode) (Note 1)	$R_{\text {tjl }}$	35	
Thermal Resistance, Junction-to-Tab (Cathode) (Note 1)	$\mathrm{R}_{\mathrm{tjtab}}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Thermal Resistance, Junction-to-Ambient (Note 1)	$\mathrm{R}_{\text {tja }}$	23	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 \& 10

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value		Unit
Maximum Instantaneous Forward Voltage (Note 2), See Figure 2	V_{F}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$	V
$\left(\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~A}\right)$		0.30	0.20	
$\left(\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}\right)$		0.38	0.33	
$\left(\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~A}\right)$		0.52	0.50	
Maximum Instantaneous Reverse Current (Note 2), See Figure 4	I_{R}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$	mA
$\left(\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}\right)$		0.41	11	
$\left(\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}\right)$		0.13	5.3	
($\left.\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}\right)$		0.05	3.2	

2. Pulse Test: Pulse Width $\leq 250 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current

Figure 5. Current Derating

Figure 7. Capacitance

Figure 6. Forward Power Dissipation

Figure 8. Typical Operating Temperature Derating*

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_{j} therefore must include forward and reverse power effects. The allowable operating T_{J} may be calculated from the equation: $\quad T_{J}=T_{J \max }-r(t)(P f+P r)$ where
$r(t)=$ thermal impedance under given conditions,
$\mathrm{Pf}=$ forward power dissipation, and
$\mathrm{Pr}=$ reverse power dissipation
This graph displays the derated allowable T_{J} due to reverse bias under DC conditions only and is calculated as $T_{J}=T_{J m a x}-r(t) P r$, where $r(t)=$ Rthja. For other power applications further calculations must be performed.

MBRM130LT1G, NRVBM130LT1G, MBRM130LT3G, NRVBM130LT3G

Figure 9. Thermal Response Junction to Lead

Figure 10. Thermal Response Junction to Ambient

SCALE 4:1

DIM	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	1.75	2.05	0.069	0.081
B	1.75	2.18	0.069	0.086
C	0.85	1.15	0.033	0.045
D	0.40	0.69	0.016	0.027
F	0.70	1.00	0.028	0.039
H	-0.05	0.10	-0.002	0.004
J	0.10	0.25	0.004	0.010
K	3.60	3.90	0.142	0.154
L	0.50	0.80	0.020	0.031
R	1.20	1.50	0.047	0.059
S	0.50	REF	0.019	REF

NDTES:
GENERIC
MARKING DIAGRAMS*

1. DIMENSIUNING AND TOLERANCING PER

ASME Y14.5M, 1994.
2. CUNTRQLLING DIMENSIUN: MILLIMETERS
3. DIMENSIUN b APPLIES Tロ PLATED TERMINAL AND IS MEASURED BETWEEN 0. 15 AND O. 30mm FRDM THE TERMINAL TIP.
STYLE 1: STYLE 2: STYLE 3:

PIN 1. CATHODE PIN 1. ANODE OR CATHODE ANODE
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB14853C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED CoPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | POWERMITE | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Schottky Diodes \& Rectifiers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30
BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T
SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

