Ultrafast Power Rectifier, Surface Mount

Plastic SOD-123FL Package

NHP120SF, NRVHP120SF

This SOD-123FL ultrafast rectifier provides fast switching performance with soft recovery in a compact thermally efficient package. Its compact footprint makes it ideally suited to portable and automotive applications where board space is at a premium. Its low profile makes it a good option for flat panel display and other applications with limited vertical clearance. The device offers low leakage over temperature making it a good match for applications requiring low quiescent current.

Features

- Fast Soft Switching for Reduced EMI and Higher Efficiency
- Low Profile Maximum Height of 1.0 mm
- Small Footprint Footprint Area of 5.94 mm²
- NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 11.7 mg (Approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Maximum for 10 Seconds
- MSL 1

Applications

- Instrumentation
- Output Rectification in Switching Power Supplies Including Mini Adaptors and Flat Panel Display
- LED Lighting
- Freewheeling Diode Where Space is at a Premium

ON Semiconductor®

www.onsemi.com

ULTRAFAST RECTIFIER 1.0 AMPERES 200 VOLTS

SOD-123FL CASE 498

MARKING DIAGRAM

P12 = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NHP120SFT3G	SOD-123 (Pb-Free)	10000 / Tape & Reel
NRVHP120SFT3G	SOD-123 (Pb-Free)	10000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NHP120SF, NRVHP120SF

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (T _L = 158°C)	I _O	1.0	А
Peak Repetitive Forward Current (Square Wave, 20 kHz, T _L = 155°C)	I _{FRM}	2.0	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	30	А
Storage and Operating Junction Temperature Range (Note 1)	T _{stg} , T _J	-65 to +175	°C

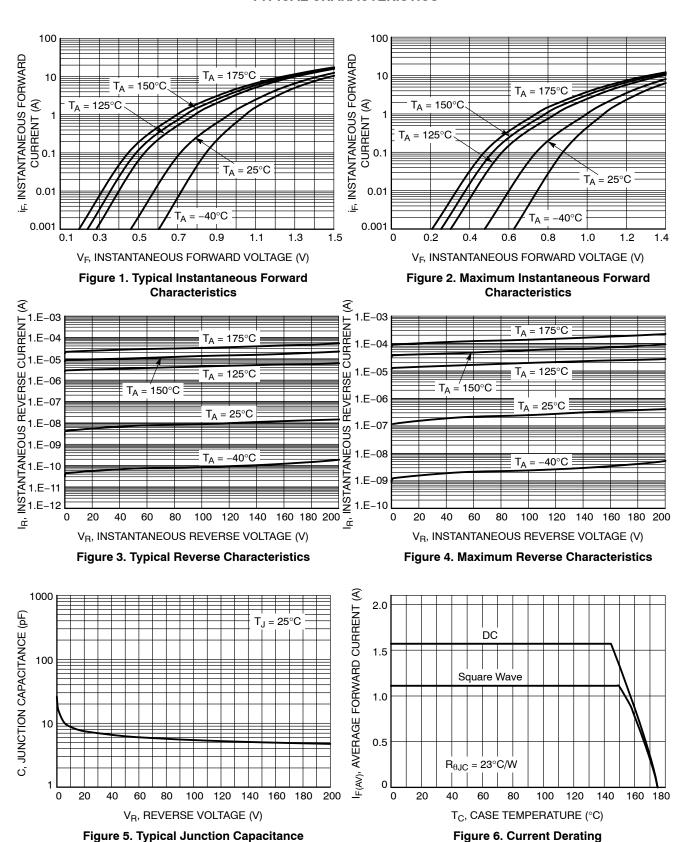
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Lead (Note 2)	Ψ_{JCL}	23	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	85	°C/W
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{\theta JA}$	330	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 4) $ \begin{aligned} &(I_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}) \\ &(I_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}) \\ &(I_F = 1.0 \text{ A}, T_J = 125^{\circ}\text{C}) \\ &(I_F = 2.0 \text{ A}, T_J = 125^{\circ}\text{C}) \end{aligned} $	V _F	1.0 1.1 0.85 0.95	V
Maximum Instantaneous Reverse Current (Note 4) (Rated dc Voltage, T _J = 25°C) (Rated dc Voltage, T _J = 125°C)	I _R	0.5 25	μΑ
Reverse Recovery Time $I_F=1.0$ A, $V_R=30$ V, $dI/dt=50$ A/ μ s, $T_J=25^{\circ}C$	t _{rr}	25	ns
Reverse Recovery Time I _F = 1.0 A, V_R = 30 V, dl/dt = 50 A/ μ s, T_J = 50°C	t _{rr}	50	ns
Maximum Non-Repetitive Avalanche Energy T _J = 25°C	E _{AS}	10	mJ


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 2. Mounted with 700 mm² copper pad size (Approximately 1 in²) 1 oz FR4 Board.
- 3. Mounted with pad size approximately 20 mm² copper, 1 oz FR4 Board.
- 4. Pulse Test: Pulse Width \leq 380 $\mu s,$ Duty Cycle \leq 2.0%.

^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

NHP120SF, NRVHP120SF

TYPICAL CHARACTERISTICS

NHP120SF, NRVHP120SF

TYPICAL CHARACTERISTICS

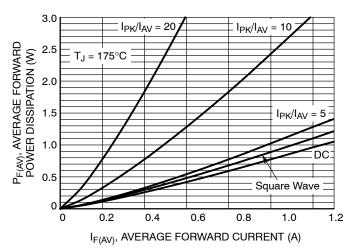


Figure 7. Forward Power Dissipation

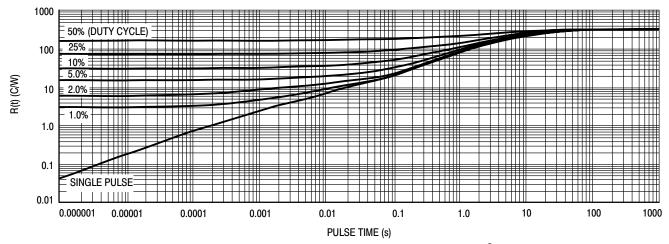
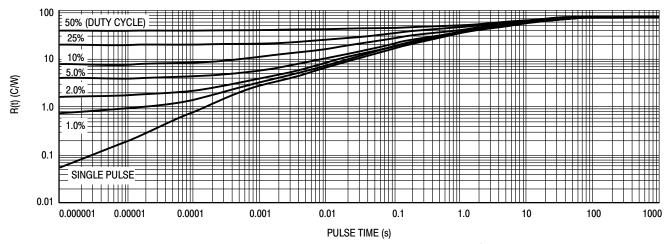
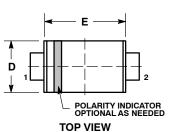
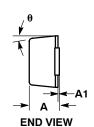
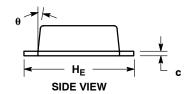
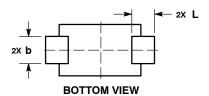


Figure 8. Thermal Response, Junction-to-Ambient (20 mm² pad)

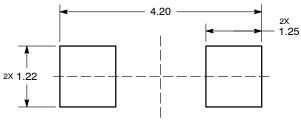




Figure 9. Thermal Response, Junction-to-Ambient (1 in² pad)




SOD-123FL **CASE 498** ISSUE D

DATE 10 MAY 2013



RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

NOTES:

- ES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH.
 DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION
 OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	0.95	0.98	0.035	0.037	0.039
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.70	0.90	1.10	0.028	0.035	0.043
С	0.10	0.15	0.20	0.004	0.006	0.008
D	1.50	1.65	1.80	0.059	0.065	0.071
E	2.50	2.70	2.90	0.098	0.106	0.114
L	0.55	0.75	0.95	0.022	0.030	0.037
HE	3.40	3.60	3.80	0.134	0.142	0.150
θ	0°	-	8°	0°	-	8°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON11184D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOD-123FL		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF
ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077
85HFR60 40HFR60 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850