USB 2.0 High Speed and Audio Switch with Negative Swing Capability

The NS5S1153 is a DPDT switch for combined true-ground audio and USB 2.0 high speed data applications. It allows portable systems to use a single port to pass either USB data or audio signals from an external headset; headset; the 2 channels being compliant to USB 2.0, USB 1.1 and USB 1.0.

The switch is capable of passing signals with negative voltages as low as 2 V below ground. The device features shunt resistors on the audio ports. These resistors are switched in when the audio channel is off and provide a safe path to ground for any charge that may build up on the audio lines. This reduces Pop \& Click noise in the audio system. The NS5S1153 is also equipped with VBUS detection circuitry to immediately switch to USB mode in the event that a voltage is detected on Vbus.

The NS5S1153 is housed in a space saving, ultra low profile 1.4 x $1.8 \times 0.5 \mathrm{~mm} 10$ pin UQFN package.

Features

- 2:1 High Speed Switch
- USB 2.0, USB $1.1 \&$ USB 1.0 Capable on all channels
- High Bandwidth of 820 MHz on D+/D-
- Capable of Passing Negative Swing Signals Down to -2 V on R/L Channel
- 1.8 V Compatible Control Pin \& VBUS Detection Circuitry for Automatic Switching
- Audio Channel Shunt Resistors for Pop \& Click Noise Reduction
- Ultra-Low THD in Audio Mode: 0.01% into 16Ω Load
- 5.25 V Tolerant Common Pins
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Micro or Mini USB Applications
- Shared High Speed Data or Audio on a Single Connector
- Mobile Phones
- Tablets
- Bar Code Scanners
- Portable Devices

Figure 1. Application Diagram

ON Semiconductor ${ }^{\circledR}$ www.onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NS5S1153MUTAG	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NS5S1153

Figure 2. Functional Block Diagram
(Top View)

PIN DESCRIPTIONS

Pin \#	Name	Direction	
1	D-	I/O	Degative Data Line for USB Signals
2	R	I/O	Right Line for Audio Signals
3	L	I/O	Left Line for Audio Signals
4	GND	Power	Ground
5	V $_{\text {CC }}$	Power	Power Supply
6	COM-	I/O	Left Audio / Negative Data Common Line
7	COM +	I/O	Right Audio / Positive Data Common Line
8	A $_{\text {SEL }}$	Input	Control Input Override Select Line
9	V Bus_CTRL	Input	Control Input Select Line from $\mathrm{V}_{\text {Bus. If this pin is driven by an open drain I/O, we sug- }}^{\text {gest maximum 100 k } \Omega \text { pull up. }}$ 10\quad D+

TRUTH TABLE

ASEL	$\mathbf{V}_{\text {BUS }}$	\mathbf{L}, \mathbf{R}	$\mathbf{D}+, \mathbf{D}-$	L, R SHUNT
Low	Low	ON	OFF	OFF
Low	High	OFF	ON	ON
High	X	ON	OFF	OFF

OPERATING CONDITIONS

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	V_{CC}	Positive DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{V}_{\text {BuS }}$	$\mathrm{V}_{\text {BUS_CTRL }}$	$\mathrm{V}_{\text {Bus }}$ Control Input Voltage	-0.5 to +6.0	V
$\mathrm{V}_{\text {IS }}$	$\begin{aligned} & \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	Analog Signal Voltage	-0.5 to +6.0	V
	$\begin{aligned} & \mathrm{R} \text { to } \mathrm{COM}+ \\ & \mathrm{L} \text { to } \mathrm{COM}- \end{aligned}$		-2.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	
$\mathrm{V}_{\text {IS }}$	COM + , COM -	DC Signal Voltage Tolerance (<24 hours)	5.25	V
$\mathrm{V}_{\text {IN }}$	ASel	Control Input Override Voltage	-0.5 to +6.0	V
I_{Cc}	V_{CC}	Positive DC Supply Current	50	mA
T_{S}		Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IIs_CON	$\begin{gathered} \hline \mathrm{COM}+, \mathrm{COM}- \\ \mathrm{R}, \mathrm{~L}, \mathrm{D}+, \mathrm{D}- \end{gathered}$	Analog Signal Continuous Current-Closed Switch	± 100	mA
IIS_PK	$\begin{gathered} \text { COM+, COM- } \\ \text { R, L, D+, D- } \end{gathered}$	Analog Signal Continuous Current 10\% Duty Cycle	± 500	mA
IN	ASel	Control Input Override Current	1	mA
	V ${ }_{\text {BUS_CTRL }}$	VBUS Control Input Current	1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
V_{CC}	V_{CC}	Positive DC Supply Voltage	2.7	5.0	V
$V_{\text {BuS }}$	VBUS_CTRL	$V_{\text {BUS }}$ Control Input Voltage	GND	5.25	V
$\mathrm{V}_{\text {IS }}$	$\begin{aligned} & \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	Analog Signal Voltage (Note 1)	GND	$\mathrm{V}_{\text {CC }}$	V
	$\begin{aligned} & \mathrm{R} \text { to } \mathrm{COM}+ \\ & \mathrm{L} \text { to } \mathrm{COM}- \end{aligned}$		-2.0	$\mathrm{V}_{\text {CC }}$	
$\mathrm{V}_{\text {IN }}$	ASel	Control Input Override Voltage	GND	$\mathrm{V}_{\text {CC }}$	V
T_{A}		Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. In USB mode, any signal applied to the off-state audio inputs R, L may not swing below ground or above 1.5 V .

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	V_{Cc} (V)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
V_{IH}	$A_{\text {SEL }}$	Control Input HIGH Voltage		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.4 \\ & 1.5 \end{aligned}$	-	-	V
$\mathrm{V}_{\text {IL }}$	$\mathrm{A}_{\text {SEL }}$	Control Input LOW Voltage		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	-	$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V
1 IN	$\mathrm{A}_{\text {SEL }}$	Current Input Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\mathrm{CC}}$	4.2	-	-	± 50	nA
V_{IH}	V BUS_CTRL	$V_{\text {BUS }}$ Control Input HIGH Voltage		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.2 \\ & 2.7 \end{aligned}$	-	-	V
$\mathrm{V}_{\text {IL }}$	V BUS_CTRL	$\mathrm{V}_{\text {BUS }}$ Control Input LOW Voltage		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	-	$\begin{aligned} & \hline 0.8 \\ & 1.1 \\ & 1.6 \end{aligned}$	V
1 IN	V BUS_CTRL	VBUS Current Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{CC}}$	4.2	-	-	± 25	$\mu \mathrm{A}$

SUPPLY CURRENT AND LEAKAGE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
${ }^{\text {NC,NO(OFF) }}$	D+, D-	OFF State Leakage	$\mathrm{V}_{\text {BUS_CTRL }}=0 \mathrm{~V}, 4.2 \mathrm{~V}$; $\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{COM}+}=0 \mathrm{~V}, 4.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{D}+}, \mathrm{V}_{\mathrm{D}-}=4.2 \mathrm{~V}, 0 \mathrm{~V}$ or float $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}=$ float or $4.2 \mathrm{~V}, 0 \mathrm{~V}$	4.2			± 80	nA
${ }^{\text {ICOM(ON) }}$	$\begin{aligned} & \text { COM-, } \\ & \mathrm{COM}+ \end{aligned}$	ON State Leakage	$\mathrm{V}_{\text {BUS_CTRL }}=0 \mathrm{~V}, 4.2 \mathrm{~V}$; $\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{COM}+}=0 \mathrm{~V}, 4.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{D}_{+}}, \mathrm{V}_{\mathrm{D}-}=4.2 \mathrm{~V}, 0 \mathrm{~V}$ or float $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}=$ float or $4.2 \mathrm{~V}, 0 \mathrm{~V}$	4.2			± 100	nA
$I_{\text {CC }}$	V_{CC}	Quiescent Supply	$\mathrm{V}_{\text {IS }}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	4.2		21	35	$\mu \mathrm{A}$
loff	$\begin{aligned} & \hline \mathrm{COM}-, \\ & \mathrm{COM}+ \end{aligned}$	Power OFF Leakage	$0 \leq \mathrm{V}_{\text {IS }} \leq 4.2 \mathrm{~V}$	0			50	$\mu \mathrm{A}$

USB ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
RON	$\begin{aligned} & \text { D+ to COM+ } \\ & \text { D- to COM }- \end{aligned}$	On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.6 \\ & 4.6 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	$\begin{aligned} & \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.08 \\ & 0.08 \\ & 0.08 \end{aligned}$		Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	On-Resistance Matching	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$		Ω

AUDIO ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
RON	$\begin{aligned} & \text { R to COM+ } \\ & \mathrm{L} \text { to COM- } \end{aligned}$	On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=-1.5 \text { to } 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.6 \\ & 4.6 \end{aligned}$	Ω
RFLAT	$\begin{aligned} & \text { R to COM+ } \\ & \text { L to COM- } \end{aligned}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=-1.5 \text { to } 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.11 \\ & 0.11 \\ & 0.11 \end{aligned}$		Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \hline \mathrm{R} \text { to } \mathrm{COM}+ \\ & \mathrm{L} \text { to COM- } \end{aligned}$	On-Resistance Matching	$\begin{aligned} & 1 \mathrm{ON}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=-0.85 \text { to } 0.85 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$		Ω
$\mathrm{R}_{\text {SH }}$	L, R	Shunt Resistance (Resistor + Switch)	$\mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA}$	2.7		118	160	Ω
VBUS_PD	V ${ }_{\text {BUS_CTRL }}$	$\begin{aligned} & \text { VBUS_CTRL Pull-down } \\ & \text { Resistor } \end{aligned}$	$\mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA}$			530		k Ω

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
ton		Turn-ON Time (Closed to Open) (Figures 8 and 9)		2.7-4.2	-	14	-	$\mu \mathrm{s}$
toff		Turn-OFF Time (Closed to Open) (Figures 8 and 9)		2.7-4.2	-	75	-	ns
TBBM		Break-Before-Make Time (Figure 7)			-	7.0	-	$\mu \mathrm{s}$
BW	$\begin{aligned} & \mathrm{D}+\text { to } \mathrm{COM}+ \\ & \mathrm{D}-\text { to } \mathrm{COM}- \end{aligned}$	-3 dB Bandwidth (Figure 10)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		-	900	-	MHz

ISOLATION (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
$\mathrm{O}_{\text {IRR }}$	Open	OFF-Isolation (Figure 10)	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		-	-81	-	dB
$\mathrm{X}_{\text {TALK }}$	$\mathrm{COM}+$ to COM-	Non-Adjacent Channel Crosstalk (Figure 10)	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		-	-93	-	dB
THD+N		Total Harmonic Distortion + Noise	$\begin{aligned} & \hline \mathrm{V}_{\text {BUS_CTRL }}=0 \mathrm{~V} \\ & \mathrm{~A}_{\text {SEL }}=3.0 \mathrm{~V} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{~V}_{\text {cOM }}=0.5 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	3.0	-	0.001	-	\%
THD		Total Harmonic Distortion	$\begin{aligned} & \hline \mathrm{V}_{\text {BUS_CTRL }}=0 \mathrm{~V} \\ & \mathrm{~A}_{\mathrm{SEL}}=0 \mathrm{~V}, 3.6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{COM}}= \pm 2.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{Lp}}=16 \Omega \end{aligned}$	3.6	-	0.01	-	\%
PSRR		Power Supply Rejection Ratio	$\begin{aligned} & \hline f=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{COM}}=50 \Omega \end{aligned}$	3.0	-	60	-	dB

CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{A}_{\mathrm{SEL}}=0 \mathrm{~V}$)

Symbol	Pins	Parameter	Test Conditions		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
C_{IN}	$A_{\text {SEL }}$	Control Pin Input Capacitance	$\mathrm{V}_{C C}=0 \mathrm{~V}$		-	2.6	-	pF
Con	$\begin{aligned} & \text { D+ to COM+ } \\ & \text { D- to COM } \end{aligned}$	USB ON Capacitance	V ${ }_{\text {BUS_CTRL }}=5 \mathrm{~V}$		-	6.9	-	pF
$\mathrm{Con}^{\text {O }}$	$\begin{aligned} & \mathrm{R} \text { to } \mathrm{COM}+ \\ & \mathrm{L} \text { to } \mathrm{COM}- \end{aligned}$	Audio ON Capacitance	V ${ }_{\text {BUS_CTRL }}=0 \mathrm{~V}$		-	9.3	-	pF
C OFF	D+, D-	USB OFF Capacitance	$\mathrm{V}_{\text {BUS_CTRL }}=0 \mathrm{~V}$		-	4.8	-	pF
$\mathrm{C}_{\text {OFF }}$	R, L	Audio OFF Capacitance	$\mathrm{V}_{\text {BUS_CTRL }}=5 \mathrm{~V}$		-	4.8	-	pF

Figure 3. High Speed USB Eye Diagram of Signal Path without Switch

Figure 5. Audio ON Resistance vs. Signal Voltage @ $\mathrm{T}=25^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.2 \mathrm{~V}$

Figure 4. High Speed USB Eye Diagram of Signal Path with NS5S1153 ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$)

Figure 6. USB ON Resistance vs. Signal Voltage @ $\mathrm{T}=25^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.2 \mathrm{~V}$

NS5S1153

Figure 7. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 9. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$V_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω
Figure 10. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

UQFN10 1.4x1.8, 0.4P
CASE 488AT-01
ISSUE A
DATE 01 AUG 2007
SCALE 5:1

BOTTOM VIEW

MOUNTING FOOTPRINT

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AIMENSION b APPLIES TO PLATED TERMINAL
ANEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40 .25	
E	1.80 BSC	
e	$0.40 ~ B S C ~$	
L	0.30	0.50
L1	0.00	0.15
L3	0.40	0.60

GENERIC MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " P ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22493D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN UQFN, 1.4 X 1.8, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE + MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T MAX14651ETA+T

