# Low V<sub>CE(sat)</sub>, Transistor, PNP, 12 V, 1.0 A, SOT-723 Package

ON Semiconductor's  $e^2$ PowerEdge family of low  $V_{CE(sat)}$  transistors are miniature surface mount devices featuring ultra low saturation voltage ( $V_{CE(sat)}$ ) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e<sup>2</sup>PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

#### **Features**

- High Continuous Current Capability (1 A)
- Low V<sub>CE(sat)</sub> (150 mV Typical @ 500 mA)
- Small Size 1.2 mm x 1.2 mm
- This is a Pb-Free Device

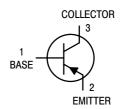
#### **Benefits**

- High Specific Current and Power Capability Reduces Required PCB Area
- Reduced Parasitic Losses Increases Battery Life

#### MAXIMUM RATINGS (T<sub>A</sub> = 25°C)

| Rating                                   | Symbol                            | Max                        | Unit |
|------------------------------------------|-----------------------------------|----------------------------|------|
| Collector-Emitter Voltage                | V <sub>CEO</sub>                  | -12                        | Vdc  |
| Collector-Base Voltage                   | V <sub>CBO</sub>                  | -12                        | Vdc  |
| Emitter-Base Voltage                     | V <sub>EBO</sub>                  | -5.0                       | Vdc  |
| Collector Current - Continuous<br>- Peak | I <sub>C</sub><br>I <sub>CM</sub> | -1.0<br>-3.0               | Adc  |
| Electrostatic Discharge                  | ESD                               | HBM Class 3B<br>MM Class C |      |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1



#### ON Semiconductor®

http://onsemi.com

# 12 VOLTS, 1.0 AMPS PNP LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 350 m $\Omega$



#### MARKING DIAGRAM



SOT-723 CASE 631AA STYLE 1



VE = Specific Device Code M = Date Code

#### **ORDERING INFORMATION**

| Device        | Package              | Shipping <sup>†</sup> |
|---------------|----------------------|-----------------------|
| NSS12100M3T5G | SOT-723<br>(Pb-Free) | 8000/<br>Tape & Reel  |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### THERMAL CHARACTERISTICS

| Characteristic                                                     | Symbol                            | Max         | Unit        |
|--------------------------------------------------------------------|-----------------------------------|-------------|-------------|
| Total Device Dissipation T <sub>A</sub> = 25°C                     | P <sub>D</sub> (Note 1)           | 460         | mW          |
| Derate above 25°C                                                  |                                   | 3.7         | mW/°C       |
| Thermal Resistance,<br>Junction-to-Ambient                         | R <sub>θJA</sub> (Note 1)         | 270         | °C/W        |
| Total Device Dissipation  T <sub>A</sub> = 25°C  Derate above 25°C | P <sub>D</sub> (Note 2)           | 625<br>5.0  | mW<br>mW/°C |
| Thermal Resistance,<br>Junction-to-Ambient                         | R <sub>θJA</sub> (Note 2)         | 200         | °C/W        |
| Thermal Resistance,<br>Junction-to-Lead 3                          | $R_{	hetaJL}$                     | 105         | °C/W        |
| Junction and Storage<br>Temperature Range                          | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C          |

#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                                                                                                                                                                                                                                                                            | Symbol               | Min              | Тур                                            | Max                                            | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------------------------------------------------|------------------------------------------------|------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                       |                      |                  |                                                |                                                |      |
| Collector - Emitter Breakdown Voltage, (I <sub>C</sub> = -10 mAdc, I <sub>B</sub> = 0)                                                                                                                                                                                                                                                                                    | V <sub>(BR)CEO</sub> | -12              | _                                              | -                                              | Vdc  |
| Collector - Base Breakdown Voltage, (I <sub>C</sub> = -0.1 mAdc, I <sub>E</sub> = 0)                                                                                                                                                                                                                                                                                      | V <sub>(BR)CBO</sub> | -12              | _                                              | -                                              | Vdc  |
| Emitter - Base Breakdown Voltage, (I <sub>E</sub> = -0.1 mAdc, I <sub>C</sub> = 0)                                                                                                                                                                                                                                                                                        | V <sub>(BR)EBO</sub> | -5.0             | _                                              | -                                              | Vdc  |
| Collector Cutoff Current, (V <sub>CB</sub> = -12 Vdc, I <sub>E</sub> = 0)                                                                                                                                                                                                                                                                                                 | I <sub>CBO</sub>     | -                | -0.01                                          | -0.1                                           | μAdc |
| Emitter Cutoff Current, (V <sub>CES</sub> = -5.0 Vdc, I <sub>E</sub> = 0)                                                                                                                                                                                                                                                                                                 | I <sub>EBO</sub>     | -                | -0.01                                          | -0.1                                           | μAdc |
| ON CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                        |                      |                  |                                                |                                                |      |
| DC Current Gain (Note 3) ( $I_C = -10$ mA, $V_{CE} = -2.0$ V) ( $I_C = -500$ mA, $V_{CE} = -2.0$ V) ( $I_C = -1.0$ A, $V_{CE} = -2.0$ V)                                                                                                                                                                                                                                  | h <sub>FE</sub>      | 200<br>120<br>80 | -<br>-<br>-                                    | -<br>-<br>-                                    |      |
| Collector - Emitter Saturation Voltage (Note 3) $ \begin{aligned} &(I_C = -0.05 \text{ A}, \ I_B = -0.005 \text{ A}) \text{ (Note 4)} \\ &(I_C = -0.1 \text{ A}, \ I_B = -0.002 \text{ A}) \\ &(I_C = -0.1 \text{ A}, \ I_B = -0.010 \text{ A}) \\ &(I_C = -0.5 \text{ A}, \ I_B = -0.050 \text{ A}) \\ &(I_C = -1.0 \text{ A}, \ I_B = -0.100 \text{ A}) \end{aligned} $ | V <sub>CE(sat)</sub> | -<br>-<br>-<br>- | -0.030<br>-0.060<br>-0.040<br>-0.155<br>-0.350 | -0.035<br>-0.080<br>-0.060<br>-0.220<br>-0.410 | V    |
| Base – Emitter Saturation Voltage (Note 3) ( $I_C = -1.0 \text{ A}, I_B = -0.01 \text{ A}$ )                                                                                                                                                                                                                                                                              | V <sub>BE(sat)</sub> | -                | 0.95                                           | -1.15                                          | V    |
| Base - Emitter Turn-on Voltage (Note 3) (I <sub>C</sub> = -2.0 A, V <sub>CE</sub> = -2.0 V)                                                                                                                                                                                                                                                                               | V <sub>BE(on)</sub>  | -                | -1.05                                          | -1.15                                          | V    |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                              |                      |                  |                                                |                                                |      |
| Input Capacitance (V <sub>EB</sub> = −0.5 V, f = 1.0 MHz)                                                                                                                                                                                                                                                                                                                 | Cibo                 | _                | 40                                             | 50                                             | pF   |
| Output Capacitance (V <sub>CB</sub> = -3.0 V, f = 1.0 MHz)                                                                                                                                                                                                                                                                                                                | Cobo                 | -                | 15                                             | 20                                             | pF   |
| Noise Figure (I <sub>C</sub> = 0.2 mA, $V_{CF}$ = 5.0 V, $R_{S}$ = 1.0 k $\Omega$ , f = 1.0 MHz, BW = 200 Hz)                                                                                                                                                                                                                                                             | NF                   | _                | _                                              | 5.0                                            | dB   |

FR-4 @ 100 mm², 1 oz copper traces.
 FR-4 @ 500 mm², 1 oz copper traces.
 Pulsed Condition: Pulse Width = 300 μsec, Duty Cycle ≤ 2%.
 Guaranteed by design but not tested.

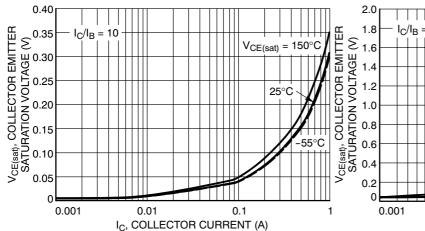



Figure 1. Collector Emitter Saturation Voltage vs.
Collector Current

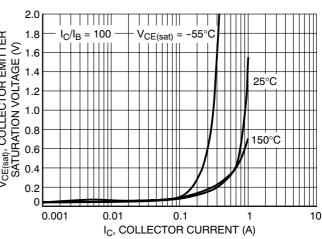



Figure 2. Collector Emitter Saturation Voltage vs.
Collector Current

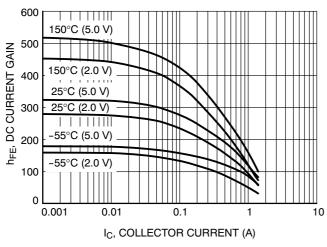



Figure 3. DC Current Gain vs. Collector Current

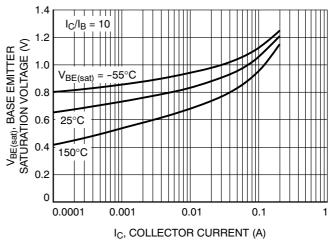



Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

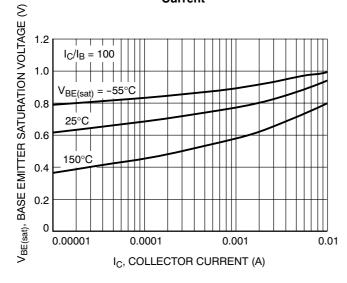



Figure 5. Base Emitter Saturation Voltage vs.
Collector Current

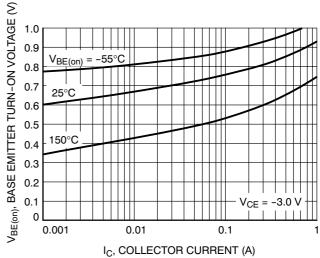
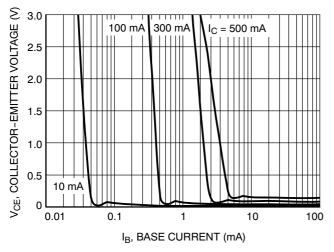




Figure 6. Base Emitter Turn-On Voltage vs.
Collector Current

50



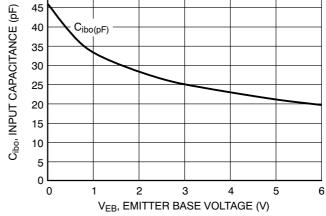
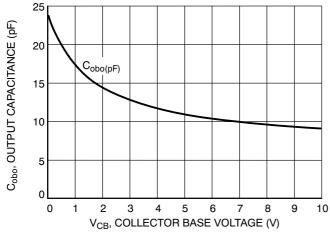
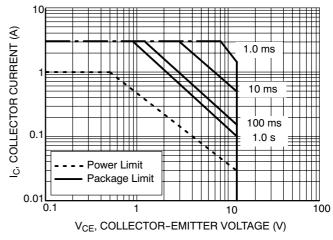
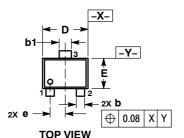



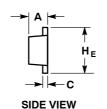

Figure 7. Saturation Region @ 25°C

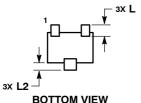
Figure 8. Input Capacitance







Figure 9. Output Capacitance


Figure 10. Safe Operating Area




SOT-723 CASE 631AA-01 ISSUE D

**DATE 10 AUG 2009** 







**BOTTOM VIEW** STYLE 2:

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

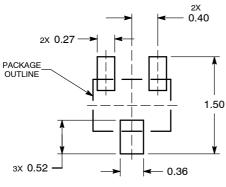
STYLE 3: PIN 1. ANODE PIN 1. ANODE 2. N/C 3. CATHODE 2. ANODE 3. CATHODE

STYLE 5: PIN 1. GATE STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE 2. SOURCE 3. DRAIN

#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

|     | MILLIMETERS |      |      |  |
|-----|-------------|------|------|--|
| DIM | MIN         | NOM  | MAX  |  |
| Α   | 0.45        | 0.50 | 0.55 |  |
| b   | 0.15        | 0.21 | 0.27 |  |
| b1  | 0.25        | 0.31 | 0.37 |  |
| С   | 0.07        | 0.12 | 0.17 |  |
| D   | 1.15        | 1.20 | 1.25 |  |
| Е   | 0.75        | 0.80 | 0.85 |  |
| е   | 0.40 BSC    |      |      |  |
| ΗE  | 1.15        | 1.20 | 1.25 |  |
| L   | 0.29 REF    |      |      |  |
| L2  | 0.15        | 0.20 | 0.25 |  |


#### **GENERIC MARKING DIAGRAM\***



XX = Specific Device Code Μ = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

#### RECOMMENDED **SOLDERING FOOTPRINT\***



**DIMENSIONS: MILLIMETERS** 

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON12989D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOT-723     |                                                                                                                                                                                   | PAGE 1 OF 1 |

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001