NSS20201MR6T1G ## 20 V, 3 A, Low V_{CE(sat)} **NPN Transistor** ON Semiconductor's e²PowerEdge family of low V_{CE(sat)} transistors are miniature surface mount devices featuring ultra low saturation voltage (V_{CE(sat)}) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important. Typical application are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers. ### **MAXIMUM RATINGS** $(T_A = 25^{\circ}C)$ | Rating | Symbol | Max | Unit | |--------------------------------|------------------|-----|------| | Collector-Emitter Voltage | V _{CEO} | 20 | V | | Collector-Base Voltage | V _{CBO} | 40 | V | | Emitter-Base Voltage | V _{EBO} | 5.0 | V | | Collector Current – Continuous | I _C | 2.0 | Α | | Collector Current - Peak | I _{CM} | 3.0 | Α | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|--|----------------|-------| | Total Device Dissipation T _A = 25°C | P _D (Note 1) | 460 | mW | | Derate above 25°C | | 3.7 | mW/°C | | Thermal Resistance,
Junction-to-Ambient | R _{θJA} (Note 1) | 272 | °C/W | | Total Device Dissipation T _A = 25°C | P _D (Note 2) | 780 | mW | | Derate above 25°C | | 6.3 | mW/°C | | Thermal Resistance,
Junction-to-Ambient | R _{θJA} (Note 2) | 160 | °C/W | | Thermal Resistance,
Junction-to-Lead #1 | R _{θJL} (Note 1)
R _{θJL} (Note 2) | 48
40 | °C/W | | Total Device Dissipation (Single Pulse < 10 s) | P _{Dsingle}
(Note 2) | 1.5 | W | | Junction and Storage
Temperature Range | T _J , T _{stg} | –55 to
+150 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. - FR-4 @ 100 mm2, 2 oz copper traces. FR-4 @ 500 mm2, 2 oz copper traces. ### ON Semiconductor® http://onsemi.com # 20 VOLTS **3.0 AMPS** NPN LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 100 m Ω **CASE 318G** TSOP-6 STYLE 6 #### **DEVICE MARKING** VS0 = Specific Device Code = Date Code = Pb-Free Package (Note: Microdot may be in either location) ### ORDERING INFORMATION | Device | Package | Shipping [†] | |----------------|---------------------|-----------------------| | NSS20201MR6T1G | TSOP-6
(Pb-Free) | | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### NSS20201MR6T1G ### **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|----------------------|-------------------|-------------|-------------------------|------| | OFF CHARACTERISTICS | | | | | | | Collector – Emitter Breakdown Voltage (I _C = 10 mA, I _B = 0) | V _{(BR)CEO} | 20 | _ | - | V | | Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mA}, I_E = 0)$ | V _{(BR)CBO} | 40 | _ | - | V | | Emitter – Base Breakdown Voltage $(I_E = 0.1 \text{ mA}, I_C = 0)$ | V _{(BR)EBO} | 5.0 | _ | - | V | | Collector Cutoff Current (V _{CB} = 40 V, I _E = 0) | Ісво | - | _ | 0.1 | μΑ | | Collector–Emitter Cutoff Current (V _{CES} = 20 V) | I _{CES} | - | _ | 0.1 | μΑ | | Emitter Cutoff Current (V _{EB} = 5.0 V) | I _{EBO} | - | | 0.1 | μΑ | | ON CHARACTERISTICS | | | | | | | DC Current Gain (Note 3)
(I _C = 1.0 mA, V _{CE} = 5.0 V)
(I _C = 0.5 A, V _{CE} = 5.0 V)
(I _C = 1.0 A, V _{CE} = 5.0 V) | h _{FE} | 300
300
200 | -
-
- | -
-
- | | | Collector – Emitter Saturation Voltage (Note 3) ($I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$) ($I_C = 0.5 \text{ A}, I_B = 50 \text{ mA}$) ($I_C = 0.1 \text{ A}, I_B = 10 \text{ mA}$) | V _{CE(sat)} | -
-
- | -
-
- | 0.150
0.100
0.025 | V | | Base – Emitter Saturation Voltage (Note 3) (I _C = 1.0 A, I _B = 0.1 A) | V _{BE(sat)} | - | - | 0.95 | V | | Base – Emitter Turn–on Voltage (Note 3) (I _C = 1.0 A, V _{CE} = 2.0 V) | V _{BE(on)} | - | - | 0.90 | V | | Cutoff Frequency ($I_C = 100 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$, $f = 100 \text{ MHz}$ | f _T | 200 | - | _ | MHz | | Output Capacitance (f = 1.0 MHz) | C _{obo} | _ | _ | 15 | pF | ^{3.} Pulsed Condition: Pulse Width \leq 300 µsec, Duty Cycle \leq 2%. ### TSOP-6 CASE 318G-02 **ISSUE V** 12 **DATE 12 JUN 2012** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM - LEAD THIORNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D - AND E1 ARE DETERMINED AT DATUM H. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE. | | MILLIMETERS | | | |-----|-------------|------|------| | DIM | MIN | NOM | MAX | | Α | 0.90 | 1.00 | 1.10 | | A1 | 0.01 | 0.06 | 0.10 | | b | 0.25 | 0.38 | 0.50 | | С | 0.10 | 0.18 | 0.26 | | D | 2.90 | 3.00 | 3.10 | | E | 2.50 | 2.75 | 3.00 | | E1 | 1.30 | 1.50 | 1.70 | | е | 0.85 | 0.95 | 1.05 | | L | 0.20 | 0.40 | 0.60 | | L2 | 0.25 BSC | | | | N.A | 00 | | 4.00 | STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 BASE 1 6. COLLECTOR 2 Н | c T | | |----------|--| | DETAIL Z | | | STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN | STYLE
PIN | |--|--------------| | STYLE 7:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. N/C | STYLI
PIN | COLLECTOR 6. EMITTER 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 DRAIN 1 STYLE 13: PIN 1. GATE 1 1. EMITTER 2 2. BASE 1 3. 4. COLLECTOR 1 EMITTER 1 BASE 2 6. COLLECTOR 2 E 8: Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND STYLE 14: PIN 1. ANODE SOURCE 3 GATE CATHODE/DRAIN CATHODE/DRAIN 5. CATHODE/DRAIN 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out STYLE 9: PIN 1. LOW VOLTAGE GATE STYLE 3: PIN 1. ENABLE 2. DRAIN 3. SOURO SOURCE 5. DRAIN 6. HIGH VOLTAGE GATE STYLE 15: PIN 1. ANODE SOURCE 3. GATE DRAIN 5. N/C 6. CATHODE STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD STYLE 10 PIN 1. D(OUT)+ 2. GND 3. D(OUT)-4. D(IN)- 5. VBUS 6. D(IN)+ STYLE 16: PIN 1. ANODE/CATHODE 2. BASE 5. ANODE 3 FMITTER COLLECTOR CATHODE PIN 1. SOURCE 1 2. DRAIN 2 DRAIN 2 4 SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2 STYLE 17: PIN 1. EMITTER 2. BASE STYLE 11: 5. COLLECTOR 6. COLLECTOR STYLE 12: 2. GROUND 3. I/O 4. I/O 6. I/O STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3 BASE 4. EMITTER ### RECOMMENDED **SOLDERING FOOTPRINT*** **DIMENSIONS: MILLIMETERS** ### **GENERIC** MARKING DIAGRAM* 3 ANODE/CATHODE CATHODE COLLECTOR XXX = Specific Device Code Α =Assembly Location Υ = Year W = Work Week = Pb-Free Package XXX = Specific Device Code M = Date Code = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot ' ", may or may not be present. | DOCUMENT NUMBER: | 98ASB14888C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSOP-6 | | PAGE 1 OF 1 | | ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Bipolar Transistors - BJT category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: 619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001