NSS40300DDR2G

Dual 40 V, 6.0 A, Low $\mathbf{V}_{\text {CE(sat) }}$ PNP Transistor

ON Semiconductor's e^{2} PowerEdge family of low $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ transistors are surface mount devices featuring ultra low saturation voltage ($\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e ${ }^{2}$ PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

- Halide Free
- This is a $\mathrm{Pb}-$ Free Device

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-40	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-7.0	Vdc
Collector Current - Continuous	I_{C}	-3.0	A
Collector Current - Peak	$\mathrm{I}_{\text {CM }}$	-6.0	A
Electrostatic Discharge	ESD	HBM Class 3B MM Class C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
40 VOLTS 6.0 AMPS

PNP LOW $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ TRANSISTOR EQUIVALENT R ${ }_{\text {DS(on) }} 80 \mathrm{~m} \Omega$

DEVICE MARKING

40300	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
-	Pb-Free Package
(Note: Microdot may be in either location)	

ORDERING INFORMATION

Device	Package	Shipping †
NSS40300DDR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
SINGLE HEATED			
$\begin{aligned} & \text { Total Device Dissipation (Note 1) } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Derate above } 25^{\circ} \mathrm{C} \end{aligned}$	P_{D}	$\begin{aligned} & 576 \\ & 4.6 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 1)	$\mathrm{R}_{\text {өJA }}$	217	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\begin{aligned} & \text { Total Device Dissipation (Note 2) } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Derate above } 25^{\circ} \mathrm{C} \end{aligned}$	P_{D}	$\begin{aligned} & \hline 676 \\ & 5.4 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 2)	$\mathrm{R}_{\text {өJA }}$	185	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DUAL HEATED (Note 3)

Total Device Dissipation (Note 1) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Derate above } 25^{\circ} \mathrm{C} \end{aligned}$	P_{D}	$\begin{aligned} & 653 \\ & 5.2 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 1)	$\mathrm{R}_{\text {өJA }}$	191	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 783 \\ 6.3 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 2)	$\mathrm{R}_{\text {өJA }}$	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. FR-4 @ $10 \mathrm{~mm}^{2}, 1$ oz. copper traces, still air.
2. FR-4@ $100 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.
3. Dual heated values assume total power is the sum of two equally powered devices.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CEO	-40	-	-	Vdc
$\begin{aligned} & \text { Collector-Base Breakdown Voltage } \\ & \left(\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right) \end{aligned}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	-40	-	-	Vdc
$\begin{aligned} & \text { Emitter-Base Breakdown Voltage } \\ & \quad\left(I_{E}=-0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right) \end{aligned}$	$\mathrm{V}_{\text {(BR) }{ }^{\text {EBO }}}$	-7.0	-	-	Vdc
Collector Cutoff Current $\left(V_{C B}=-40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {cbo }}$	-	-	-0.1	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=-6.0 \mathrm{Vdc}\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	-0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain (Note 4) } \\ & \left(I_{C}=-10 \mathrm{~mA}, \mathrm{~V}_{C E}=-2.0 \mathrm{~V}\right) \\ & \left(I_{C}=-500 \mathrm{~mA}, \mathrm{~V}_{C E}=-2.0 \mathrm{~V}\right) \\ & \left(I_{C}=-1.0 \mathrm{~A}, \mathrm{~V}_{C E}=-2.0 \mathrm{~V}\right) \\ & \left(I_{C}=-2.0 \mathrm{~A}, \mathrm{~V}_{C E}=-2.0 \mathrm{~V}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 250 \\ & 220 \\ & 180 \\ & 150 \end{aligned}$	$\begin{aligned} & 380 \\ & 340 \\ & 300 \\ & 230 \end{aligned}$	-	
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage (Note 4) } \\ & \left(I_{C}=-0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.010 \mathrm{~A}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.100 \mathrm{~A}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.010 \mathrm{~A}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.200 \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		$\begin{aligned} & -0.013 \\ & -0.075 \\ & -0.130 \\ & -0.135 \end{aligned}$	$\begin{aligned} & -0.017 \\ & -0.095 \\ & -0.170 \\ & -0.170 \end{aligned}$	V
Base-Emitter Saturation Voltage (Note 4) $\left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.01 \mathrm{~A}\right)$	$\mathrm{V}_{\text {BE (sat) }}$	-	-0.780	-0.900	V
$\begin{aligned} & \text { Base-Emitter Turn-on Voltage (Note 4) } \\ & \left(\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	-0.660	-0.750	V
Cutoff Frequency $\left(\mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}\right)$	f_{T}	100	-	-	MHz
Input Capacitance ($\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$)	Cibo	-	250	300	pF
Output Capacitance ($\mathrm{V}_{\mathrm{CB}}=-3.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$)	Cobo	-	50	65	pF

SWITCHING CHARACTERISTICS

Delay $\left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{~mA}\right)$	t_{d}	-	-	60	ns
Rise $\left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{~mA}\right)$	t_{r}	-	-	120	ns
Storage $\left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{~mA}\right)$	t_{s}	-	-	400	ns
Fall $\left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{~mA}\right)$	t_{f}	-	-	130	ns

4. Pulsed Condition: Pulse Width $=300 \mu \mathrm{sec}$, Duty Cycle $\leq 2 \%$.

I_{C}, COLLECTOR CURRENT (A)
Figure 1. Collector Emitter Saturation Voltage vs. Collector Current

Figure 3. DC Current Gain vs. Collector Current

I_{C}, COLLECTOR CURRENT (A)
Figure 5. Base Emitter Turn-On Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (A)
Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

Figure 4. Base Emitter Saturation Voltage vs. Collector Current

I_{b}, BASE CURRENT (A)
Figure 6. Saturation Region

Figure 7. Input Capacitance

Figure 8. Output Capacitance

Figure 9. Safe Operating Area

SOLDERING FOOTPRINT＊

GENERIC
MARKING DIAGRAM＊
NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION．
4．MAXIMUM MOLD PROTRUSION 0.15 （0．006） PER SIDE．
5．DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 （0．005）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION．
6．751－01 THRU 751－06 ARE OBSOLETE．NEW STANDARD IS 751－07．

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	${ }^{\circ}$	$8{ }^{\circ}$	0
	8	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

8 月且且且	8 月且且且
XXXXXX	XXXXXX
AYWW	AYWW
\＃$\because 甘 甘$	1 \＃\＃\＃
Discrete	Discrete （Pb－Free）

XXXXX＝Specific Device Code
A＝Assembly Location
L＝Wafer Lot
＝Year WW Work
＝Work Week
$=$ Work Week \quad＝Pb－Free Package
$=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-\mathrm{Free}$ indicator，＂ G ＂or microdot＂ r ＂，may or may not be present．Some products may not follow the Generic Marking．
＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

STYLES ON PAGE 2

| DOCUMENT NUMBER： | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontrolled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－8 NB | PAGE 1 OF 2 |

[^0]STYLE 1:

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:

PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE

SOURCE
GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10U
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
CATHODE 2
CATHODE 3
CATHODE 4
CATHODE 5
COMMON ANODE
COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
IOUT
STYLE 29:
PIN 1. BASE, DIE \#1
EMITTER, \#1
BASE, \#2
EMITTER, \#2
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#1
COLLECTOR, \#1

STYLE 2:
PIN 1. COLIECTOR, DIE,
COLLECTOR, \#1
COLLECTOR, \#1
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#2
BASE, \#2
EMITTER, \#2
BASE, \#1
EMITTER, \#1
STYLE 6:
PIN 1. SOURCE
DRAIN
DRAIN
SOURCE
SOURCE
. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
BIAS 1 OUTPUT GROUND GROUND BIAS 2 7. INPUT 8. GROUND

STYLE 14:
PIN 1. N-SOURCE
N-GATE
P-SOURCE
P-GATE
P-DRAIN
P-DRAIN
. N-DRAIN
8. N-DRAIN

STYLE 18:
PIN 1. ANODE
2. ANODE

SOURCE
GATE
DRAIN
DRAIN
7. CATHODE
8. CATHODE

STYLE 22:
PIN 1. I/O LINE 1
COMMON CATHODE/VCC
COMMON CATHODE/VCC
I/O LINE 3
COMMON ANODE/GND
I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$

ENABLE
ILIMIT
SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
. GATE 1

STYLE 3
PIN

1. DRAIN, DIE \#1
2. DRAIN, \#1
3. DRAIN, \#2

DRAIN, \#2
5. GATE, \#2
6. SOURCE, \#2
7. GATE, \#1
8. SOURCE, \#

STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:
PIN 1. ANODE 1
2. ANODE
3. ANODE
3. ANODE 1
4. ANODE 1
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:

PIN 1. ILIMIT
2. OVLO

UVLO
INPUT+
SOURCE
SOURCE
SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12:

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#
3. EMITTER, DIE
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DAS̄IC_OFF
3. DASIC_SW_DET
4. GND
5. V MON
6. VBULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

[^1] rights of others.
onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15

[^0]: ON Semiconductor and（IN）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

