12 V, 4.0 A, Low V_{CE(sat)} PNP Transistor

ON Semiconductor's e²PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Rating	Symbol	Max	Unit		
Collector-Emitter Voltage	V _{CEO}	-12	Vdc		
Collector-Base Voltage	V _{CBO}	-12	Vdc		
Emitter-Base Voltage	V _{EBO}	-7.0	Vdc		
Collector Current – Continuous	Ι _C	-2.0	А		
Collector Current – Peak	I _{CM}	-4.0	А		
Electrostatic Discharge	ESD	HBM Class 3B MM Class C			

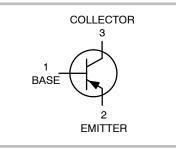
MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Characteristic	Symbol	Мах	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 1)	460 3.7	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 1)	270	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	540 4.3	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 2)	230	°C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _{Dsingle} (Note 3)	710	mW
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4@100 mm², 1 oz. copper traces.

2. FR-4 @ 500 mm², 1 oz. copper traces.


3. Thermal response.

ON Semiconductor®

www.onsemi.com

-12 VOLTS 4.0 AMPS PNP LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 65 m Ω

CASE 318 STYLE 6

MARKING DIAGRAM

VE = Specific Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

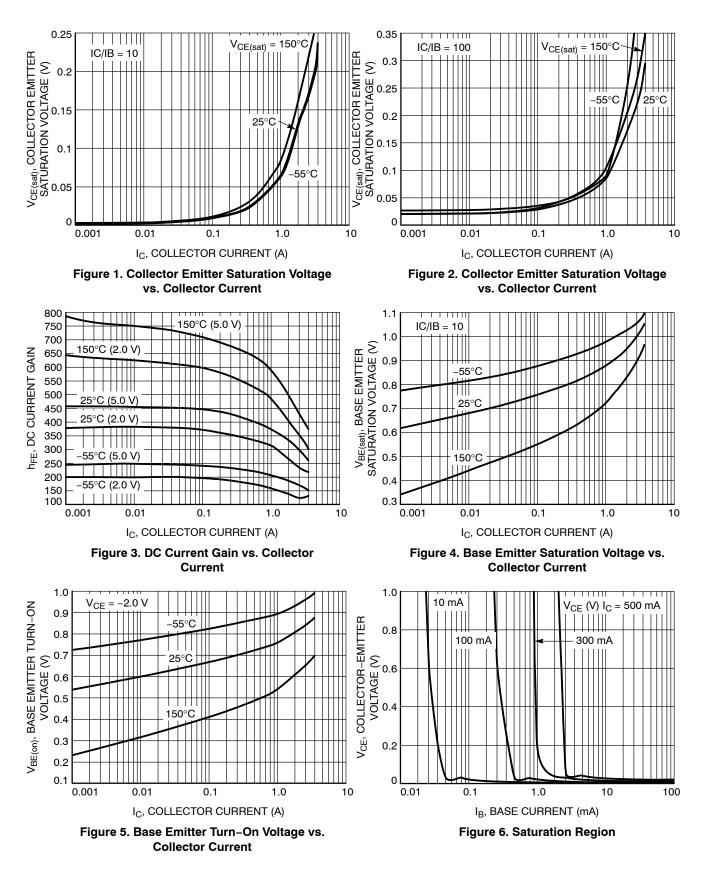
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS12200LT1G, NSV12200LT1G*	SOT-23 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage $(I_{C} = -10 \text{ mAdc}, I_{B} = 0)$	V _{(BR)CEO}	-12	-	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	-12	-	-	Vdc
Emitter – Base Breakdown Voltage $(I_E = -0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	-7.0	-	-	Vdc
Collector Cutoff Current ($V_{CB} = -12$ Vdc, $I_E = 0$)	I _{CBO}	_	-	-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -7.0 Vdc)	I _{EBO}	_	-	-0.1	μAdc
ON CHARACTERISTICS					-
DC Current Gain (Note 4) ($I_C = -10 \text{ mA}, V_{CE} = -2.0 \text{ V}$) ($I_C = -500 \text{ mA}, V_{CE} = -2.0 \text{ V}$) ($I_C = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V}$) ($I_C = -2.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	h _{FE}	250 250 200 150	- 300 - -	- - -	
Collector – Emitter Saturation Voltage (Note 4) ($I_C = -0.1 \text{ A}, I_B = -0.010 \text{ A}$) (Note 5) ($I_C = -1.0 \text{ A}, I_B = -0.100 \text{ A}$) ($I_C = -1.0 \text{ A}, I_B = -0.010 \text{ A}$) ($I_C = -2.0 \text{ A}, I_B = -0.200 \text{ A}$)	V _{CE(sat)}	- - -	-0.008 -0.065 -0.100 -0.130	-0.011 -0.090 -0.120 -0.180	V
Base – Emitter Saturation Voltage (Note 4) $(I_C = -1.0 \text{ A}, I_B = -0.01 \text{ A})$	V _{BE(sat)}	_	_	-0.900	V
Base – Emitter Turn–on Voltage (Note 4) ($I_C = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	V _{BE(on)}	_	-	-0.900	V
Cutoff Frequency (I _C = -100 mA, V _{CE} = -5.0 V, f = 100 MHz)	fT	100	-	-	MHz
Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz)	Cibo	-	-	350	pF
Output Capacitance (V_{CB} = -3.0 V, f = 1.0 MHz)	Cobo	-	-	120	pF
SWITCHING CHARACTERISTICS					
Delay (V _{CC} = –10 V, I _C = 750 mA, I _{B1} = 15 mA)	t _d	_	-	60	ns
Rise (V _{CC} = -10 V, I _C = 750 mA, I _{B1} = 15 mA)	t _r	-	-	120	ns
Storage (V _{CC} = –10 V, I _C = 750 mA, I _{B1} = 15 mA)	t _s	_	-	250	ns
Fall (V _{CC} = -10 V, I _C = 750 mA, I _{B1} = 15 mA)	t _f	-	-	130	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle $\leq 2\%$.

5. Guaranteed by design but not tested.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

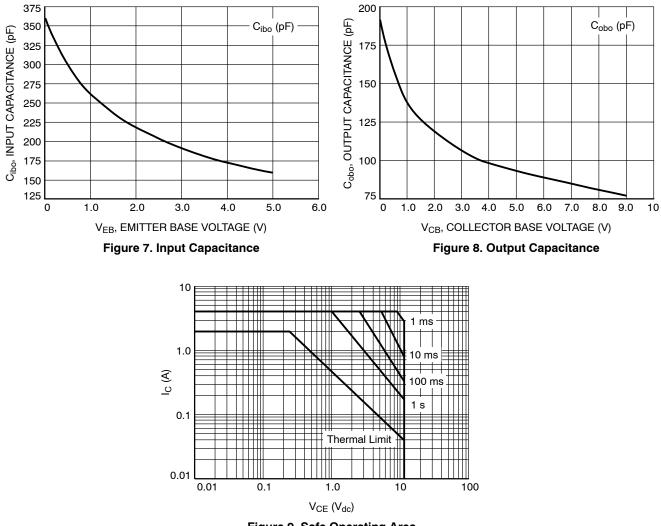
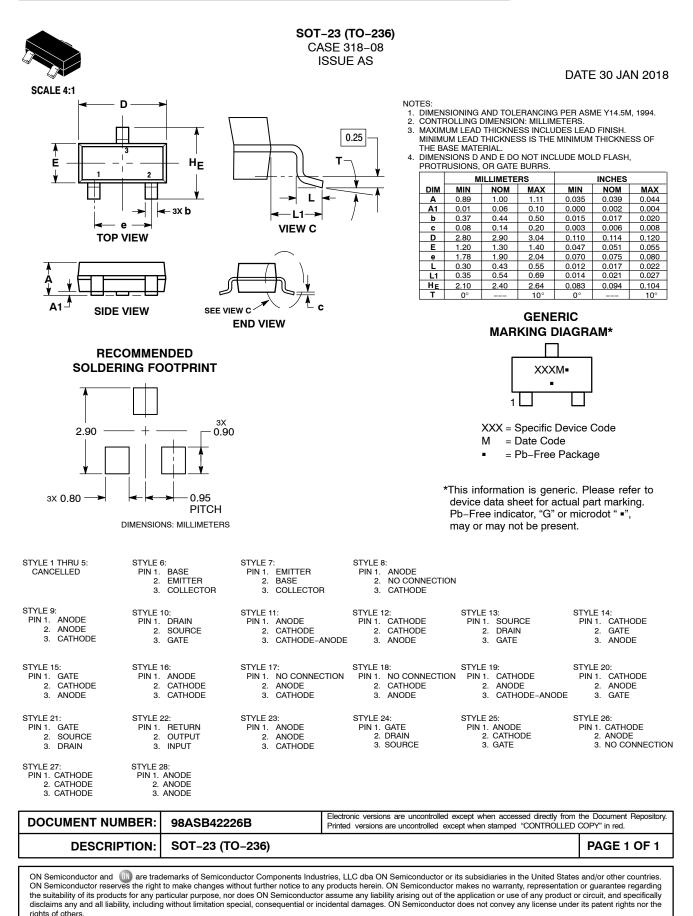



Figure 9. Safe Operating Area

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW#PBF LTC1045CN#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ