

High Voltage Switching Diode, 250 V

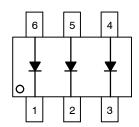
BAS21TMR6

The BAS21TMR6T1G device houses three high-voltage switching diodes in a SC-74 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

- Reduces Board Space
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS

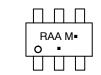
MAXIMUM RATINGS (EACH DIODE)


Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	250	Vdc
Forward Current	ΙF	200	mAdc
Peak Forward Surge Current	I _{FM(surge)}	625	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	311 2.5	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	402	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	347 2.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	360	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. FR-4 @ 10 mm², 2 oz copper traces 2. FR-4 @ 25 mm², 2 oz copper traces

SC-74 **CASE 318F**

MARKING DIAGRAM

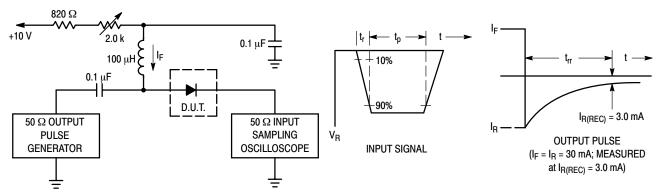
RAA = Device Code М = Date Code* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
BAS21TMR6T1G	SC-74 (Pb-Free)	3000 / Tape & Reel
NSVBAS21TMR6T1G	SC-74 (Pb-Free)	3000 / Tape & Reel
NSVBAS21TMR6T2G	SC-74 (Pb-Free)	3000 / Tape & Reel

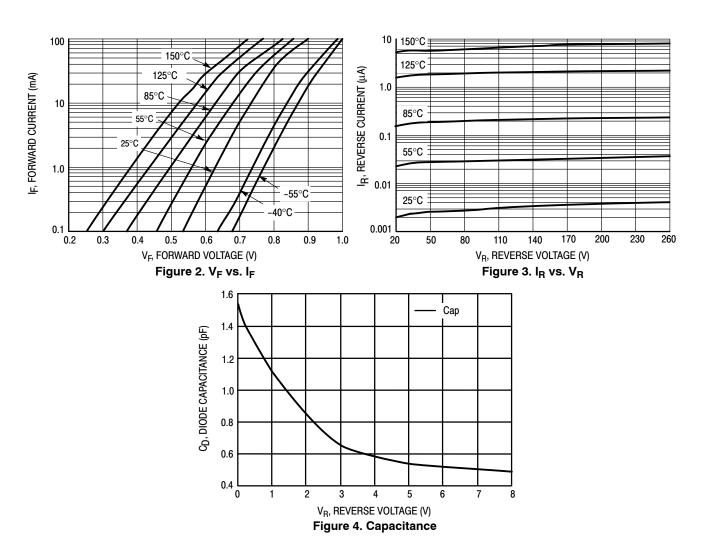

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

BAS21TMR6

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Reverse Voltage Leakage Current	I _R			μAdc
(V _R = 200 Vdc)		-	0.1	
(V _R = 200 Vdc, T _J = 150°C)		-	100	
Reverse Breakdown Voltage (I _{BR} = 100 μAdc)	V _(BR)	250	-	Vdc
Forward Voltage	V _F			Vdc
(I _F = 100 mAdc)		_	1.0	
(I _F = 200 mAdc)		-	1.25	
Diode Capacitance (V _R = 0, f = 1.0 MHz)	C _D	-	5.0	pF
Reverse Recovery Time ($I_F = I_R = 30 \text{ mAdc}$, $I_{R(REC)} = 3.0 \text{ mAdc}$, $R_L = 100$)	t _{rr}	-	50	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

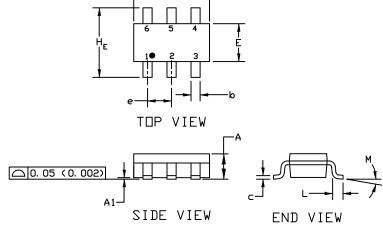

Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (I_F) of 30 mA.

- 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 30 mA.
- 3. $t_p \gg t_{rr}$

Figure 1. Recovery Time Equivalent Test Circuit

BAS21TMR6

TYPICAL CHARACTERISTICS


SC-74 CASE 318F ISSUE P

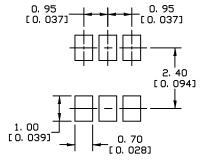
DATE 07 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MILLIMETERS		INCHES			
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
A	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0. 10	0. 001	0. 002	0. 004
b	0. 25	0. 37	0. 50	0. 010	0. 015	0. 020
С	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
E	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
е	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
L	0. 20	0. 40	0. 60	0. 008	0. 016	0. 024
М	0*		10*	0*		10*

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the UN Seniconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 2: PIN 1. NO CONNECTION 2. COLLECTOR 3. EMITTER 4. NO CONNECTION 5. COLLECTOR 6. BASE	STYLE 3: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 4: PIN 1. COLLECTOR 2 2. EMITTER 1/EMITTER 2 3. COLLECTOR 1 4. EMITTER 3 5. BASE 1/BASE 2/COLLECTOR 3 6. BASE 3	STYLE 5: PIN 1. CHANNEL 1 2. ANODE 3. CHANNEL 2 4. CHANNEL 3 5. CATHODE 6. CHANNEL 4	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1 6. COLLECTOR 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODI 4. ANODE 5. CATHODE 6. COLLECTOR	E

DOCUMENT NUMBER:	98ASB42973B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Small Signal Switching Diodes category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

BAS16E6433HTMA1 SHN2D02FUTW1T1G BAS 16-02L E6327 BAS 16-02V H6327 BAS 21U E6327 BAS 28 E6327 BAW56DWQ-7-F
BAW56M3T5G IDW40E65D1 IDW40E65D2 SMMSD4148T3G NSVDAN222T1G CDSZC01100-HF BAS28-7 JANTX1N6640
BAW56HDW-13 BAV99TQ-13-F SMSD1002T1G LS4148 IDV15E65D2 W0503RH200S0L M0268SJ200NLF M0268RJ200NLF
DAN217U-TP BAV21W-HE3_A-08 BAV99-HE3_A-08 BAW56-HE3_A-08 BAS16-HE3_A-08 BAS16D-HE3_A-08 BAV19W-HE3_A-08
BAS20-HE3_A-08 BAL99-HE3_A-08 BAV23C-HE3_A-08 DHVSD3004BRM-7 DLLFSD01LP3Q-7 BAS16VVQ-7
IDWD100E120D7XKSA1 IDWD120E120D7XKSA1 IDWD140E120D7XKSA1 IDWD30E120D7XKSA1 IDWD40E120D7XKSA1
IDWD50E120D7XKSA1 IDWD60E120D7XKSA1 IDWD75E120D7XKSA1 BAS21TWQ-7 BAV21WQ-7-F MMBD4448HADWQ-7-F
1N4148WSQ-13-F BAW56WQ-7-F BAS716-TP