ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

BAV70DXV6, NSVBAV70DXV6

Common Cathode Monolithic Dual Switching Diode

Features

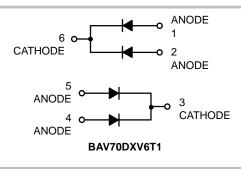
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (EACH DIODE)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	100	Vdc
Forward Current	١ _F	200	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation, $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	357 (Note 1) 2.9 (Note 1)	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	350 (Note 1)	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation, $T_A = 25^{\circ}C$ Derate above 25°C	P _D	500 (Note 1) 4.0 (Note 1)	m₩ m₩/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	250	°C/W
		(Note 1)	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 @ Minimum Pad

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

A4 = Specific Device Code M = Month Code

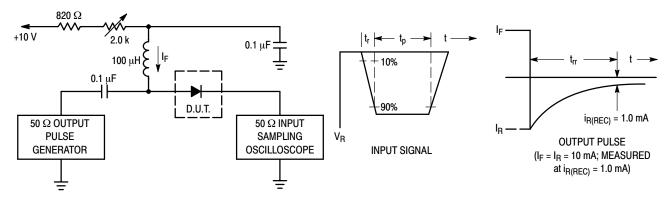
= Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
BAV70DXV6T5G	SOT–563 (Pb–Free)	8000 / Tape & Reel
NSVBAV70DXV6T5G	SOT–563 (Pb–Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


BAV70DXV6, NSVBAV70DXV6

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (EACH DIODE)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS					
Reverse Breakdown Voltage (Note 2) (I _(BR) = 100 μAdc)		$V_{(BR)}$	100	-	Vdc
Reverse Voltage Leakage Current (Note 2) $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 100 \text{ Vdc})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$		I _R	- - -	60 1.0 100	μAdc
Diode Capacitance (Note 2) ($V_R = 0, f = 1.0 \text{ MHz}$)		C _D	-	1.5	pF
Forward Voltage (Note 2) $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$		V _F	- - - -	715 855 1000 1250	mVdc
Reverse Recovery Time (Note 2) ($I_F = I_R = 10$ mAdc, $V_R = 5.0$ Vdc, $I_{R(REC)} = 1.0$ mAdc) (Figure 1)	R _L = 100 Ω	t _{rr}	-	6.0	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. For each individual diode while second diode is unbiased.

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA.

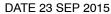

2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 10 mA.

3. t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

BAV70DXV6, NSVBAV70DXV6

Curves Applicable to Each Anode



SOT-563, 6 LEAD CASE 463A

ISSUE G

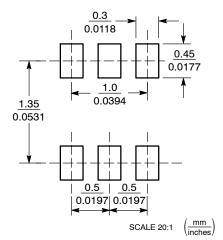
D -X-5 4 Ē H_{F} 01 2 3 > b 6 PL С е \oplus 0.08 (0.003) 🔘 X | Y

STYLE 1:	STYLE 2:
PIN 1. EMITTER 1	PIN 1. EMITTER 1
2. BASE 1	2. EMITTER2
3. COLLECTOR 2	3. BASE 2
4. EMITTER 2	4. COLLECTOR 2
5. BASE 2	5. BASE 1
6. COLLECTOR 1	6. COLLECTOR 1
STYLE 4:	STYLE 5:
PIN 1. COLLECTOR	PIN 1. CATHODE
2. COLLECTOR	2. CATHODE
3. BASE	3. ANODE
4. EMITTER	4. ANODE
5. COLLECTOR	5. CATHODE
6. COLLECTOR	6. CATHODE
STYLE 7:	STYLE 8:

PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN

PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE

- STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C


 - 5 N/C 6. ANODE 1

STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 2 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE 1 STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE

5. CATHODE 6. CATHODE STYLE 9 PIN

	9.
N 1.	SOURCE 1
2.	GATE 1
З.	DRAIN 2
4.	SOURCE 2
5.	GATE 2
6.	DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 1	

ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES

2.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS З. IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
E	1.10	1.20	1.30	0.043	0.047	0.051
е		0.5 BSC		0.02 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code

- M = Month Code
- = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Diodes - General Purpose, Power, Switching category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

RD0306T-H BAQ33-GS18 BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244 1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B 1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW75-TAP MM230L-CAA IDW40E65D1 JAN1N3600 LL4151-GS18 053684A SMMSD4148T3G 707803H NSVDAN222T1G SP000010217 ACDSW4448-HF CDSZC01100-HF BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 DLM10C-AT1 BAS28-7 BAW56HDW-13