BCP53 Series

PNP Silicon
 Epitaxial Transistors

This PNP Silicon Epitaxial transistor is designed for use in audio amplifier applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

- High Current
- NPN Complement is BCP56
- The SOT-223 Package can be soldered using wave or reflow. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Device Marking:

BCP53T1G = AH
BCP53-10T1G $=\mathrm{AH}-10$
BCP53-16T1G $=\mathrm{AH}-16$

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	-80	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	-100	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	Vdc
Collector Current	I_{C}	1.5	Adc
Total Power Dissipation $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1) Derate above $25^{\circ} \mathrm{C}$	P_{D}	1.5	W $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and Storage Temperature Range		12	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Device mounted on a glass epoxy printed circuit board $1.575 \mathrm{in} . \times 1.575 \mathrm{in}$. $x 0.059$ in.; mounting pad for the collector lead min. 0.93 sq . in.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Surface Mounted)	$\mathrm{R}_{\text {日JA }}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature for Soldering, $0.0625^{\prime \prime}$ from case Time in Solder Bath	T_{L}	260	${ }^{\circ} \mathrm{C}$

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
MEDIUM POWER HIGH
CURRENT SURFACE MOUNT
PNP TRANSISTORS
COLLECTOR 2,4
BASE

MARKING DIAGRAM

SOT-223
CASE 318E STYLE 1

A = Assembly Location
Y = Year
W = Work Week
XXXXX = Specific Device Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION		
Device	Package	Shipping ${ }^{\dagger}$
BCP53T1G	SOT-223 (Pb-Free)	$1000 /$ Tape \& Reel
SBCP53-10T1G	SOT-223 (Pb-Free)	1000/Tape \& Reel
BCP53-10T1G	SOT-223 (Pb-Free)	1000/Tape \& Reel
SBCP53-10T1G	SOT-223 (Pb-Free)	1000/Tape \& Reel
BCP53-16T1G	SOT-223 (Pb-Free)	1000/Tape \& Reel
SBCP53-16T1G	SOT-223 (Pb-Free)	1000/Tape \& Reel
BCP53-16T3G	SOT-223 (Pb-Free)	4000/Tape \& Reel
NSVBCP53-16T3G	SOT-223 (Pb-Free)	4000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\text {(BR) } \text { CBO } \text { }}$	-100	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(I_{C}=-1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	-80	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(I_{C}=-100 \mu \mathrm{Adc}, \mathrm{R}_{\mathrm{BE}}=1.0 \mathrm{k} \Omega\right.$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	-100	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \text { Ebo }}$	-5.0	-	-	Vdc
Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {cbo }}$	-	-	-100	nAdc
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=-5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {Ebo }}$	-	-	-100	nAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \text { (IC } \left.=-5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc}\right) \\ & \text { All Part Types } \\ & \text { (IC } \left.=-150 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc}\right) \\ & \text { BCP53, SBCP53 } \\ & \text { BCP53-10, SBCP53-10 } \\ & \text { BCP53-16, SBCP53-16, NSVBCP53-16 } \\ & \text { (IC } \left.=-500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc}\right) \\ & \text { All Part Types } \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 25 \\ 40 \\ 63 \\ 100 \\ 25 \end{gathered}$	-	$\begin{aligned} & 250 \\ & 160 \\ & 250 \end{aligned}$	-
Collector-Emitter Saturation Voltage $\left(I_{C}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}\right)$	$\mathrm{V}_{\text {CE(sat) }}$	-	-	-0.5	Vdc
Base-Emitter On Voltage $\left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	-	-1.0	Vdc

DYNAMIC CHARACTERISTICS

| Current-Gain - Bandwidth Product
 $\left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}, \mathrm{f}=35 \mathrm{MHz}\right)$ | f_{T} | | MHz |
| :---: | :---: | :---: | :---: | :---: | :---: |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

I_{C}, COLLECTOR CURRENT (A)
Figure 1. Collector Emitter Saturation Voltage vs. Collector Current

Figure 3. DC Current Gain vs. Collector Current (BCP53-10)

I_{C}, COLLECTOR CURRENT (A)
Figure 5. BCP53, -10 Base Emitter Saturation Voltage vs. Collector Current

I_{c}, COLLECTOR CURRENT (A)
Figure 2. DC Current Gain vs. Collector Current (BCP53)

Figure 4. DC Current Gain vs. Collector Current (BCP53-16)

I_{c}, COLLECTOR CURRENT (A)
Figure 6. BCP53-16 Base Emitter Saturation Voltage vs. Collector Current

TYPICAL CHARACTERISTICS

I_{C}, COLLECTOR CURRENT (A)
Figure 7. BCP53, -10 Base Emitter Turn-On Voltage vs. Collector Current $\mathrm{V}_{\mathrm{BE}}(\mathrm{on})$

Figure 9. BCP53, -10, -16 Saturation Region

Figure 11. Output Capacitance

I_{c}, COLLECTOR CURRENT (A)
Figure 8. BCP53-16 Base Emitter Turn-On Voltage vs. Collector Current

Figure 10. Input Capacitance

Figure 12. Standard Operating Area

SOT-223 (TO-261)
CASE 318E-04
ISSUE R
SCALE 1:1
DATE 02 OCT 2018

NDTES:

1. DIMENSIDNING AND TDLERANCING PER ASME Y14.5M, 1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D \& E DD NDT INCLUDE MDLD FLASH, PRDTRUSIDNS DR GATE BURRS. MILD FLASH, PRDTRUSIDNS IR GATE BURRS SHALL NUT EXCEED 0.200MM PER SIDE.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. A1 IS DEFINED AS THE VERTICAL DISTANCE fram the seating plane ta the lowest point gf the package body.
6. POSITIDNAL TOLERANCE APPLIES TD DIMENSIDNS b AND bl.

	MILLIMETERS		
DIM	MIN.	NDM.	MAX.
A	1.50	1.63	1.75
A1	0.02	0.06	0.10
b	0.60	0.75	0.89
b1	2.90	3.06	3.20
c	0.24	0.29	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
e	2.30 BSC		
L	0.20	---	---
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
$\boldsymbol{\theta}$	0°	---	10°

RECDMMENDED MDUNTING FOUTPRINT

| DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-223 (TO-261) | PAGE 1 OF 2 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

| STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | PIN 1. SOURCE |
| :---: | :---: | :---: | :---: | :---: | STYLE 5: PIN 1. DRAIN

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
XXXXX	$=$ Specific Device Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-223 (TO-261) | PAGE 2 OF 2 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001

