RF Transistor for Low Noise Amplifier

20 V, 30 mA, f_T = 8 GHz typ. RF Transistor

This RF transistor is designed for RF amplifier applications. SSFP package is contribute to down size of application because it is small surface mount package. This RF transistor is AEC-Q101 qualified and PPAP capable for automotive applications.

Features

• Low-noise Use: NF = 0.9 dB typ. (f = 1 GHz)

• High Cut-off Frequency: $f_T = 8$ GHz typ. $(V_{CE} = 5 \text{ V})$

• High Gain: $|S21e|^2 = 10 \text{ dB typ.}$ (f = 1.5 GHz)

• Low-voltage, Low-current Operation ($V_{CE} = 1 \text{ V}, I_{C} = 1 \text{ mA}$)

 $f_T = 3.5 \text{ GHz typ.}$

 $|S21e|^2 = 5.5 \text{ dB typ.}$ (f = 1.5 GHz)

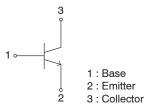
• SSFP Package is Pin-compatible with SOT-623

• AEC-Q101 Qualified and PPAP Capable

 These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- RF Amplifier for RKE
- RF Amplifier for ADAS
- RF Amplifier for Remote Engine Starter


ON Semiconductor®

www.onsemi.com

SOT-623 / SSFP CASE 631AC

ELECTRICAL CONNECTION NPN

MARKING DIAGRAM

MN = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS at Ta = 25°C

Parameter	Symbol	Value	Unit
Collector to Base Voltage	V _{CBO}	20	V
Collector to Emitter Voltage	V _{CEO}	10	V
Emitter to Base Voltage	V _{EBO}	1.5	V
Collector Current	Ic	30	mA
Collector Dissipation	P _C	100	mW
Operating Junction and Storage Temperature	Tj, Tstg	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS at Ta = 25°C

			Value			
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Collector Cutoff Current	I _{CBO}	V _{CB} = 10 V, I _E = 0 A			1.0	μΑ
Emitter Cutoff Current	I _{EBO}	V _{EB} = 1 V, I _C = 0 A			10	μΑ
DC Current Gain	h _{FE}	V _{CE} = 5 V, I _C = 10 mA	90		200	
Gain-Bandwidth Product	f _T 1	V _{CE} = 5 V, I _C = 10 mA	5	8		GHz
	f _T 2	V _{CE} = 1 V, I _C = 1 mA		3.5		GHz
Output Capacitance	Cob	V _{CB} = 10 V, f = 1 MHz		0.45	0.7	pF
Reverse Transfer Capacitance	Cre			0.3		pF
Forward Transfer Gain	S21e ² 1	V _{CE} = 5 V, I _C = 10 mA, f = 1.5 GHz	8	10		dB
	S21e ² 2	V _{CE} = 1 V, I _C = 1 mA, f = 1.5 GHz		5.5		dB
Noise Figure	NF1	V _{CE} = 5 V, I _C = 5 mA, f = 1.5 GHz		1.4	3.0	dB
	NF2	V _{CE} = 2 V, I _C = 3 mA, f = 1 GHz		0.9		dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pay attention to handling since it is liable to be affected by static electricity due to the high-frequency process adopted.

TYPICAL CHARACTERISTICS

1.0

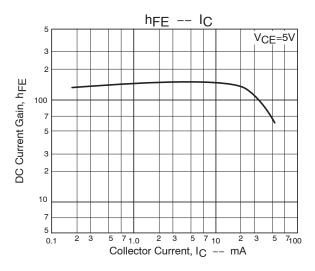


Figure 1.

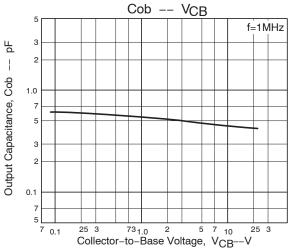
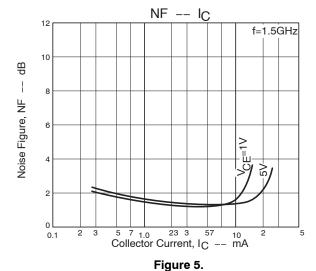



Figure 3.

fT -- IC GHZ Gain-Bandwidth Product, 作 --10 V_{CE}=5 V_{CE=1} 1.0 3 57 10 2 Collector Current, I_C -- mA

Figure 2.

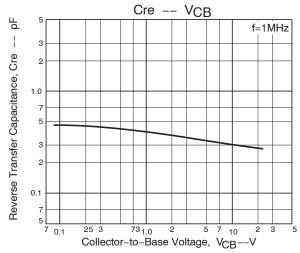
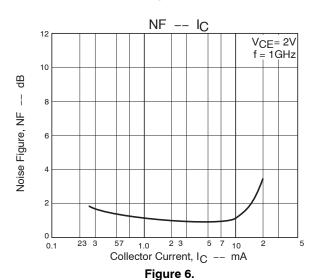
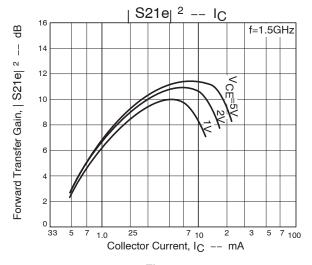




Figure 4.

TYPICAL CHARACTERISTICS

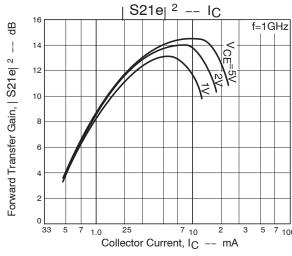


Figure 7.

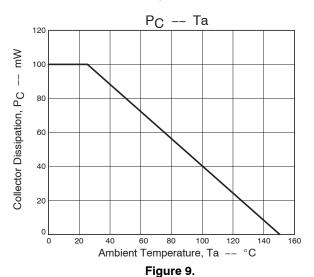
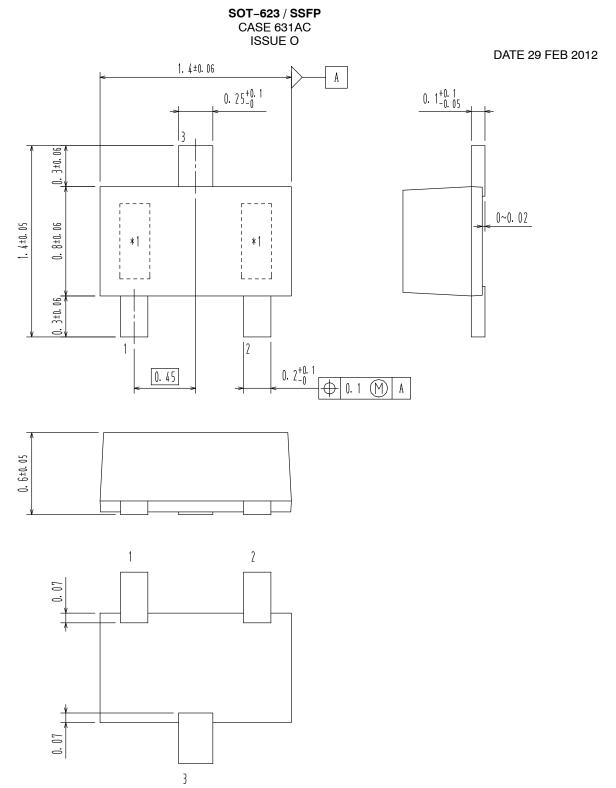


Figure 8.

S PARAMETERS (COMMON EMITTER)

OTATIAMETERS (COMMON EMITTER)								
Freq (MHz)	S11	∠ S 11	S21	∠ S21	S12	∠S12	S22	∠ S22
V_{CE} = 5 V, I_{C} = 5 mA, Z_{O} = 50 Ω								
200	0.782	-37.1	12.043	148.4	0.038	69.7	0.889	-19.5
400	0.623	-65.4	9.431	126.6	0.057	60.8	0.758	-28.3
600	0.502	-85.6	7.415	112.2	0.072	56.5	0.646	-33.3
800	0.420	-102.4	6.000	101.5	0.083	55.2	0.577	-35.9
1000	0.369	-114.7	5.025	93.6	0.094	55.1	0.538	-37.6
1200	0.339	-127.2	4.323	86.7	0.105	55.6	0.513	-38.7
1400	0.311	-137.2	3.785	80.6	0.115	55.6	0.490	-39.7
1600	0.296	-144.9	3.391	75.3	0.127	56.7	0.480	-41.3
1800	0.285	-156.5	3.018	70.1	0.139	56.4	0.466	-43.5
2000	0.277	-164.2	2.767	65.7	0.150	56.7	0.460	-45.5


S PARAMETERS (COMMON EMITTER)

Freq (MHz)	S11	∠ S 11	S21	∠ S21	S12	∠S12	S22	∠ S22
V_{CE} = 5 V, I_{C} = 10 mA, Z_{O} = 50 Ω								
200	0.641	-52.7	16.527	137.8	0.031	67.4	0.820	-22.9
400	0.468	-85.4	11.299	115.7	0.048	60.5	0.643	-30.2
600	0.377	-106.6	8.303	103.1	0.060	60.0	0.549	-32.2
800	0.321	-124.1	6.502	94.0	0.072	60.9	0.499	-33.2
1000	0.293	-136.1	5.342	87.4	0.084	61.9	0.477	-33.9
1200	0.280	-146.7	4.546	81.4	0.097	62.7	0.462	-35.0
1400	0.266	-156.6	3.947	76.4	0.108	63.0	0.449	-36.2
1600	0.263	-163.2	3.527	71.4	0.123	63.7	0.444	-37.8
1800	0.263	-173.5	3.121	67.0	0.136	62.8	0.435	-39.9
2000	0.264	-179.8	2.864	62.8	0.150	62.4	0.434	-42.4
V _{CE} = 2 V, I _C =	3 mA, Z _O = 50 Ω							
200	0.851	-30.4	8.644	154.1	0.042	73.0	0.937	-16.4
400	0.724	-55.7	7.310	133.8	0.073	61.3	0.820	-27.9
600	0.612	-76.1	6.083	118.6	0.093	54.2	0.709	-35.7
800	0.521	-93.0	5.085	106.9	0.107	50.4	0.628	-40.4
1000	0.461	-106.1	4.343	98.1	0.118	48.3	0.572	-43.7
1200	0.423	-118.6	3.806	90.0	0.128	47.5	0.536	-45.8
1400	0.382	-129.4	3.349	83.3	0.137	46.9	0.506	-47.3
1600	0.366	-138.0	3.036	77.5	0.147	47.4	0.485	-49.5
1800	0.341	-148.8	2.685	71.7	0.157	47.2	0.463	-51.9
2000	0.333	-157.7	2.479	66.7	0.167	47.6	0.453	-54.1
V _{CE} = 1 V, I _C =	1 mA, Z _O = 50 Ω							
200	0.945	-18.7	3.431	162.9	0.053	78.1	0.982	-10.3
400	0.892	-36.9	3.263	147.1	0.099	66.9	0.939	-19.7
600	0.826	-52.9	3.004	133.2	0.136	57.5	0.879	-27.7
800	0.754	-67.9	2.765	120.4	0.164	49.7	0.815	-34.8
1000	0.691	-81.1	2.539	109.9	0.184	43.4	0.758	-40.0
1200	0.639	-94.3	2.366	99.8	0.199	38.4	0.727	-44.3
1400	0.589	-104.9	2.143	91.2	0.207	34.1	0.683	-47.8
1600	0.558	-114.1	1.969	83.6	0.213	31.7	0.653	-51.4
1800	0.522	-124.4	1.797	76.2	0.218	28.7	0.621	-54.9
2000	0.490	-134.9	1.701	69.7	0.219	27.0	0.601	-58.1

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NSVF5490SKT3G	MN	SOT-623 / SSFP (Pb-Free / Halogen Free)	8,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

DOCUMENT NUMBER:	98AON67431E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-623 / SSFP		PAGE 1 OF 1		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Bipolar Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MAPRST0912-50 MCH4016-TL-H MMBT5551-G MRF10120 15GN01CA-TB-E PH1214-25M MAPRST0912-350 MMBTH10-TP BFP 640F H6327 BFP 720F H6327 BFP 740F H6327 BFR 360F H6765 MRF10031 NSVF4009SG4T1G BFP 182R E7764

BFP405H6740XTSA1 MRF10350 ASMA201 BFR360FH6765XTSA1 BFP410H6327XTSA1 BFP620FH7764XTSA1 BFP720ESDH6327XTSA1 BFP720FH6327XTSA1 BFR360L3E6765XTMA1 BFP420H6433XTMA1 BFP420H6740XTSA1 MCH4015-TL-H BF888H6327XTSA1 MMBT2222A-G BFP196WH6327XTSA1 BFP405FH6327XTSA1 BFP640ESDH6327XTSA1 BFR193L3E6327XTMA1 BFS483H6327XTSA1 NSVF4020SG4T1G NSVF6003SB6T1G MRF10005 BFP420FH6327XTSA1 BFP740FESDH6327XTSA1 BFR181E6327HTSA1 BFR181E6327HTSA1 BFR181E6327HTSA1 BFR181E6327HTSA1 BFR182E6327HTSA1 BFR193E6327HTSA1 BFP181E7764HTSA1 BFP183WH6327XTSA1 BFP720H6327XTSA1 BFR182WH6327XTSA1 BFU590GX MAPR-000912-500S00 BFR340FH6327XTSA1