Dual Bias Resistor
 Transistor
 NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

IMD10AMT1G

- High Current: $\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$ max
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	5.0	Vdc
Collector Current - Continuous	I_{C}	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Power Dissipation*	P_{D}	285	mW
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Total for both Transistors.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
(3) (2)

ORDERING INFORMATION

Device	Package	Shipping †
IMD10AMT1G	SC-74R $($ Pb-Free $)$	 Reel
NSVIMD10AMT1G	SC-74R (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, common for Q_{1} and Q_{2}, - minus sign for Q_{1} (PNP) omitted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector-Base Breakdown Voltage $\left(I_{C}=50 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0 \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR) }}$ CBO	50	-	Vdc
Collector-Emitter Breakdown Voltage $\left(I_{C}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0 \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	50	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {EBO }}}$	5.0	-	Vdc
Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0 \mathrm{~A}\right)$	$\mathrm{I}_{\text {cbo }}$	-	100	nA
$\begin{aligned} & \text { Emitter-Base Cutoff Current Q1 (PNP) } \\ & \left(\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}\right) \\ & \text { Q2 }(\mathrm{NPN}) \end{aligned}$	$\mathrm{I}_{\text {ebo }}$	-	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0 \mathrm{~A}\right)$	$\mathrm{I}_{\text {CES }}$	-	100	nA

ON CHARACTERISTICS (Note 1)

DC Current Gain $\begin{aligned} & \left(\mathrm{V}_{C E}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}\right) \mathrm{Q} 1(\mathrm{PNP}) \\ & \left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}\right) \mathrm{Q} 2(\mathrm{NPN}) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 68 \\ 100 \end{gathered}$	$\overline{-}$	
Collector-Emitter Saturation Voltage $\left(I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {CE(sat) }}$	-	0.3	Vdc
Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	$\mathrm{V}_{\text {OL }}$	-	0.2	Vdc
$\begin{aligned} & \text { Output Voltage (off) } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right) \end{aligned}$	V_{OH}	4.9	-	Vdc
Input Resistor Q1(PNP) Q2(NPN)	R1	$\begin{aligned} & 70 \\ & 7.0 \end{aligned}$	$\begin{gathered} 130 \\ 13 \end{gathered}$	$\begin{gathered} \Omega \\ \mathrm{k} \Omega \end{gathered}$
Resistor Ratio Q1(PNP) Q2(NPN)	R1/R2	0.008	0.012	

1. Pulse Test: Pulse Width ≤ 300 us, Duty Cycle < 2.0\%.

IMD10AMT1G

TYPICAL CHARACTERISTICS (NPN)

Figure 1. DC Current Gain

Figure 3. Output Current vs. Input Voltage

Figure 2. Collector-Emitter Saturation Voltage

Figure 4. Input Voltage vs. Output Current

Figure 5. Output Capacitance

IMD10AMT1G

TYPICAL CHARACTERISTICS (PNP)

I_{C}, COLLECTOR CURRENT (mA)
Figure 6. DC Current Gain

Figure 8. Output Current vs. Input Voltage

I_{C}, COLLECTOR CURRENT (mA)
Figure 7. Collector-Emitter Saturation Voltage

Figure 9. Input Voltage vs. Output Current

Figure 10. Output Capacitance

SC-74R
CASE 318AA-01
ISSUE B
DATE 27 MAY 2005

SCALE 2:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH,
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.37	0.50	0.010	0.015	0.020
c	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
e	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
$\mathbf{H}_{\mathbf{E}}$	2.50	2.75	3.00	0.099	0.108	0.118
$\boldsymbol{\theta}$	0°	-	10°	0°	-	10°

GENERIC
MARKING DIAGRAM*
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " $\boldsymbol{\wedge}$ ", may or may not be present.

$$
\begin{array}{ll}
\text { XXX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

```
STYLE 20: STYLE 21:
    PIN 1. COLLECTOR 1
        2. BASE 2
        3. EMITTER 2
        4. COLLECTOR
        5. BASE }
        6. EMITTER }
        PIN 1. COLLECTOR }
        2. EMITTER 2
        3. BASE 2
        5. EMITTER 1
    6. BASE 1
```

| DOCUMENT NUMBER: | 98AON13505D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-74R | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
RN1607(TE85L,F) DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TKAT146 DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143ZF3T5G NSBC114YF3T5G NSBC123TF3T5G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G RN1303(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 DDTC114EUAQ-7-F EMH15T2R SMUN2214T3G NSBC114TF3T5G NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN5133T1G SMUN2214T1G DTC114EUA-TP NSBA144EF3T5G NSVDTA114EET1G 2SC2223-T1B-A 2SC3912-TB-E SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G NSVDTC144EM3T5G DTC124ECATP DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DCX115EK-7-F DTC113EM3T5G NSVMUN5135DW1T1G NSVMUN2237T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G

