NPN General Purpose Transistor

The MMBT2222AM3T5G device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

- Reduces Board Space
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

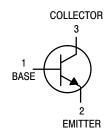
MAXIMUM RATINGS

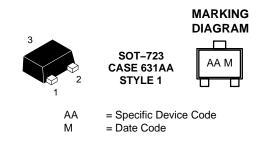
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	265 2.1	mW mW/°C
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	470	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	640 5.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	195	°C/W
Junction and Storage Temperature	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.


2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2222AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel
NSVMMBT2222AM3T5	G SOT-723 (Pb-Free)	8000/Tape & Reel

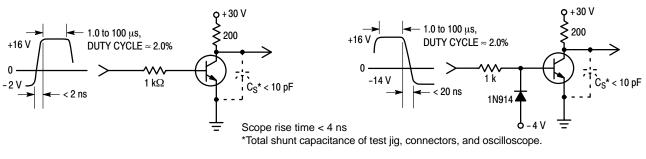
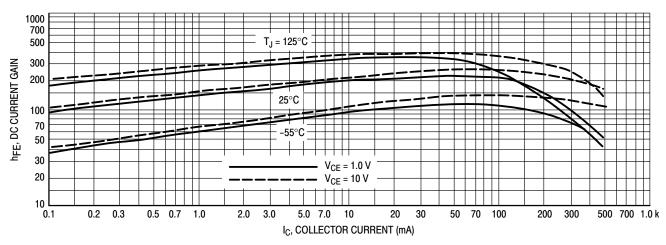
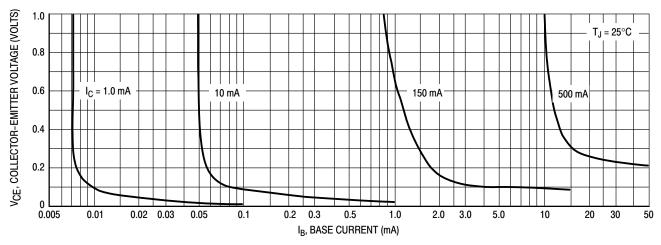
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

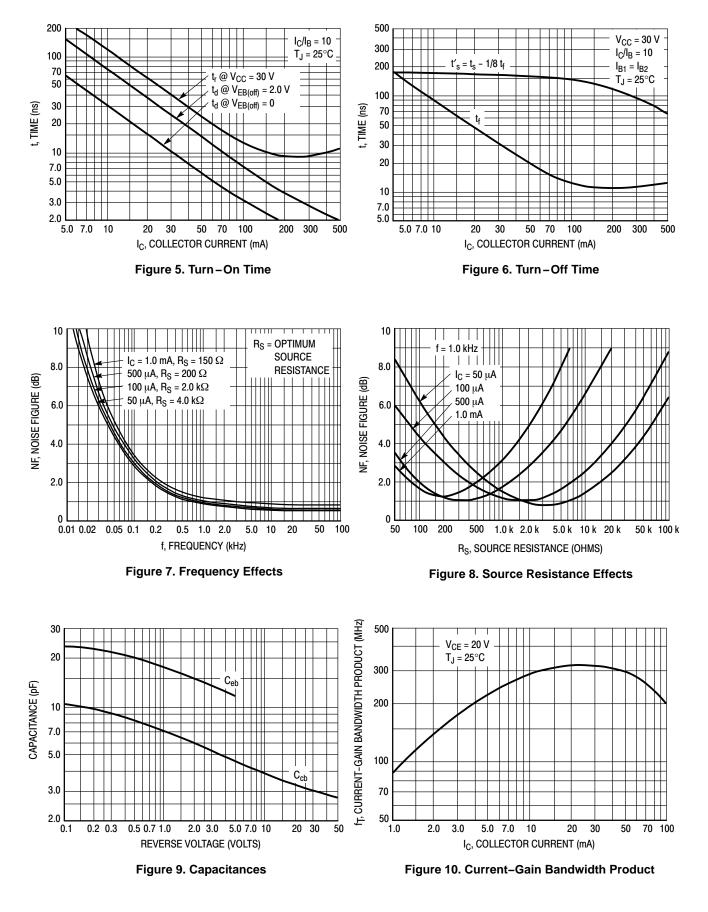
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Charac	teristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I_C =	10 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage ($I_C = 1$	0 μAdc, I _E = 0)	V _{(BR)CBO}	75	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10$	μ Adc, I _C = 0)	V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EI}	_{B(off)} = 3.0 Vdc)	I _{CEX}	_	10	nAdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}0$	C)	I _{CBO}		0.01 10	μAdc
Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I_C =	0)	I _{EBO}	_	100	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off}	= 3.0 Vdc)	I _{BL}	-	20	nAdc
ON CHARACTERISTICS			1	1	1
$ \begin{array}{c} \text{DC Current Gain} \\ (I_{C}=0.1 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ (I_{C}=1.0 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ (I_{C}=150 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) (I_{C}=150 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ (I_{C}=500 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ (I_{C}=500 \text{ mAdc}, \text{V}_{CE}=10 \text{ Vdc}) \\ \end{array} $	Note 3)	h _{FE}	35 50 75 35 100 50 40	- - - 300 -	-
Collector – Emitter Saturation Voltage (Note ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	3)	V _{CE(sat)}		0.3 1.0	Vdc
$\begin{array}{l} \text{Base-Emitter Saturation Voltage (Note 3)} \\ (I_{C} = 150 \text{ mAdc}, I_{B} = 15 \text{ mAdc}) \\ (I_{C} = 500 \text{ mAdc}, I_{B} = 50 \text{ mAdc}) \end{array}$		V _{BE(sat)}	0.6	1.2 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		-	-		
Current-Gain – Bandwidth Product (Note 4 (I _C = 20 mAdc, V _{CE} = 20 Vdc, f =		f _T	300	_	MHz
Output Capacitance ($V_{CB} = 10$ Vdc, $I_E = 0$,	f = 1.0 MHz)	C _{obo}	-	8.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I_C = 0, f	= 1.0 MHz)	C _{ibo}	-	25	pF
Input Impedance $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ vdc}, f = ($		h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ vdc}$	4 a 1 1 1 1	h _{re}		8.0 4.0	X 10 ⁻⁴
$ Small - Signal Current Gain \\ (I_C = 1.0 mAdc, V_{CE} = 10 Vdc, f = (I_C = 10 Vdc, f = $		h _{fe}	50 75	300 375	-
Output Admittance $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = (I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ vdc}, f =$	= 1.0 kHz) 1.0 kHz)	h _{oe}	5.0 25	35 200	μmhos
Collector Base Time Constant (I _E = 20 mAdc, V _{CB} = 20 Vdc, f =	31.8 MHz)	rb, C _c	_	150	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc	, R _S = 1.0 kΩ, f = 1.0 kHz)	NF	-	4.0	dB
SWITCHING CHARACTERISTICS				•	
Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc},$	t _d	-	10	
Rise Time	$I_{\rm C} = 150 \text{ mAdc}, I_{\rm B1} = 15 \text{ mAdc})$	t _r	-	25	ns
		1	1		
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$	ts	-	225	

3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%. 4. f_T is defined as the frequency at which |h_{fe}| extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS


Figure 2. Turn-Off Time

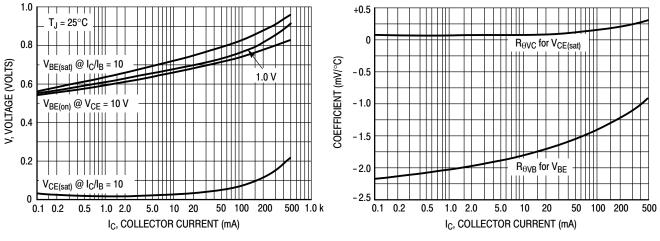
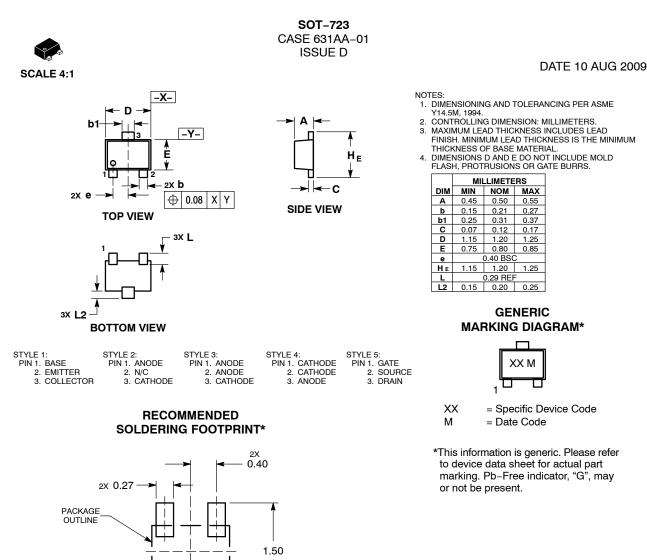



Figure 11. "On" Voltages

Figure 12. Temperature Coefficients

3X 0.52 - - 0.36 DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 DOCUMENT NUMBER:
 98AON12989D
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOT-723
 PAGE 1 OF 1

 ON Semiconductor and ON semiconductor components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15